
Predicting Save Percentage for NHL Goalies with
James-Stein Estimation

Abstract

In sports, measuring a parameter that is a gauge of a player’s overall performance is often a
challenge. We will examine whether James-Stein Estimators can provide a better guess for the
season save percentage of a goalie than the sample mean. We used data from the first ten games of
2016-2017 NHL season to predict season-end save percentage for goalies in the 2016-2017 season.
For 15/20 goalies in our data the James-Stein estimate for season save percentage was better than
the sample mean, as judged by mean-squared error. The mean-squared error for the sample mean
was on average 2.16 times greater than the mean-squared error of the Stein estimates.
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I Introduction

This paper is a look into James-Stein Estimation, and how it applies to hockey. James-Stein
Estimation suggests that an individual sample statistic weighted with the population statistic is a
better estimator of an individual’s true parameter than just the individual’s sample statistic.

Consider independent RVs (X1, X2, ..., Xn), and their means (µX1
, µX2

, ..., µXn
). The James-

Stein (J-S) Estimator works well when the variance between µXi
’s is less than the variance of point

estimates for (µX1 , µX2 , ..., µXn). That is, the J-S Estimator is a good estimator for the µXi ’s when
between player variance is less than the variance of individual players.

In sports, measuring a parameter that is a gauge of a player’s overall performance is often a
challenge. For example, if we wish to know the “true batting average” of a baseball player at a
given point in time, by the time we have enough trials to make a reasonable guess, the player’s
“true batting average" has likely changed. The player’s average could have been affected by a
countless number of circumstances, including an injury to the player, improvement or regression
in the player’s ability, or a change in the opponent’s ability. Even though attaining a player’s “true
batting average” at any given point is impossible, James-Stein Estimators can provide a better
guess for the true parameter than the sample mean (the player’s batting average at that time).

We will examine the James-Stein Estimator in relation to save percentage of NHL goalies. We
will first look at the the performance of NHL goalies approximately 5-10 games into the season
and estimate their performance for the season as a whole.

II Formula

The general formula [2] of the James-Stein estimator, is

θ̂JSi = θ̂ + c
(
xi − θ̂

)
,

for a normal distribution θ̂ ∼ N(θ, V ) where in our case, θ is the goalie’s actual season save
percentage, c is the shrinkage estimation, V is the variance of between the season save percentages
of goalies, and xi is the goalie’s save percentage from early in the season. The equation to calculate
c, the shrinkage factor, is

c = 1 − (N − 3)/S, when N > 3 , where

S =

N∑
i=1

(xi − x̄)2 and N = number of goalies in the sample.

III Application to Hockey

Motivation

We will conduct our study of James-Stein Estimation by first considering a given point in an NHL
season. We will use a group of goalies who have roughly the same number of shots against them. For
the save percentage of those goalies, we will compare how well the arithmetic average (sample mean)
compares to J-S Estimators in predicting the goalie’s overall season performance. We chose this
particular set-up because Efron and Morris’s 1977 article “Stein’s Paradox in Statistics” employed
a similar method. They looked at the batting averages of 18 players who had batted exactly 45
times in the 1970 season, and predicted their season batting average using Stein’s estimator and
the arithmetic average. In their study the mean squared error of the MLE was approximately
3.5 times larger on average than the mean squared error of the Stein Estimator [1] . We hope to
employ this same tactic to estimate overall season performance for goalies in the NHL.
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We will look into the differences in the mean squared error between J-S Estimators and the
MLE. This will be to explore the benefits of using the James-Stein over other estimators in certain
situations.

Dataset

Our data for this study came from the website offsidereview.com. For our early-season data, we
looked at the save percentages of goalies’ with 150 - 350 saves a month into the 2016-2017 NHL
season. Of those goalies, we only considered those who played most of the season (over 50 games).
The resulting sample was composed of 20 NHL goalies, see Table 1 to see the sample.

Methodology

Consider the MLE for each player, p̂i, i.e. the save percentage of a given goalie at some point in
the NHL season (the sample mean). Then we claim that np̂i ∼ Bin(n, Pi), where n is the number
of shots against the goalie and Pi is the season save percentage of the goalie. By the Central Limit
Theorem, we can approximate the distribution by p̂i

·∼ N(Pi, σ
2), where σ2 is the variance from

the binomial best estimated by:

(1) σ2 = p̄(1 − p̄)/n

Applying the James-Stein Estimator, with pi’s as xi’s and pseason, the 2016-2017 season save
percentage of goalies, as our parameter of interest, we have:

p̂JSi = p̄+ c (p̂i − p̄) , p̄ = grand average of averages 5-10 games into the season

p̄ =
1

20

20∑
i=1

p̂i, and c = shrinkage factor

c = 1 − 17σ2∑20
i=1(p̂− p̄)2

. p̂i = individual early-season save percentage

σ2 = the variance of an individual goalie given a

certain number of saves estimated by (1)

Because we had varying values of n (shots against) for each player, we took the average of the
20 values of n and got n̄ = 232.7. p̄ was computed to be 0.9187, so σ2 = 0.00032. After calculating∑20

i=1(p̂− p̄)2, we get that c = 0.41493. See Figure 3 in the Appendix for the associated R code.

Results

The average mean-squared error (MSE) for the James-Stein Estimator was 0.007 compared to

the average MSE of the sample mean (the MLE), which was 0.0150. On average, the MSE of

the MLE was 2.16 times larger. As seen in Table 2 or Figure 2, for 15 of the 20 players in the

sample, the James-Stein Estimate had a smaller MSE than the MLE. I.e. for 15/20 players in

our sample the James-Stein Estimator was better. See Figure 1 for an intuitive visualization of

the J-S Estimator.

IV Conclusion

The James-Stein Estimator outperformed the MLE by a factor of 2.16. That is, the mean-squared
error for the MLE was on average 2.16 times larger than the mean-squared error the for the
Stein-Estimator.

The James-Stein Estimator relies on the fact that the variance between players’ season save
percentages is expected to be lower than the variance between early-season save percentages. As
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seen in Figure 3, the J-S Estimator reduces the between p̂ variability in the sample, squeezing the
point estimates towards p̄. Note that in Figure 1 the pseason values are roughly centered around
p̄ which is represented by the black line.

One of the greatest weaknesses of our James-Stein Estimator is that it does not factor in prior
information. Consider two goalies, through 300 shots against both have a save percentage of 0.90.
Goalie A has a career save percentage of 0.92, whereas Goalie B has a career save percentage of
0.85. Consider a league-wide average save percentage of 0.87 . With our James-Stein Estimator,
Goalie A and Goalie B’s season averages will be estimated by some common value in the range
R = (0.87, 0.90), between the league-wide save percentage and their identical individual save
percentages. However based off of what we know about these players, we know that is is not
sensible to predict these two players will perform similarly for the remainder of the season, given
their past career performance. A sensible solution to this issue is to use some Bayesian Estimator
in conjunction with a Stein Estimator that pulls our estimator for a player towards their career
average.

Despite this shortfall of the James-Stein Estimator, in our data the Estimator worked very well.
The J-S estimator consistently provided better estimates than the MLE (sample mean).

Figure 1: Comparison of sample mean (p̂MLE), J-S estimator (p̂JS), and season save percentage
(pseason)
Note: p̄ is the grand average of save percentages 5-10 games into the season
Note 2: For Figure 1 a random sample of twelve players was taken from the twenty players for the
graph. We could not show all twenty players at once, due to the amount of clutter in the resulting
visualization.
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V Appendix

Sample GA refers to the goals against the goalie in the early season sample. Sample SA refers to
the shots against the goalie in the early season sample. p̂MLE is 1 - Sample GA/Sample SA, i.e.
the goalie’s save percentage 5-10 games into the season. pseason is the goalie’s end of season save
percentage. And Games Played refers to the total number of games played by the goalie during
the season.

Player Sample GA Sample SA p̂MLE pseason Games Played
1 BRADEN HOLTBY 18 228 0.9211 0.9249 63
2 CAM TALBOT 25 341 0.9267 0.9193 73
3 CAM WARD 20 169 0.8817 0.9053 61
4 CAREY PRICE 7 193 0.9637 0.9231 62
5 CONNOR HELLEBUYCK 14 162 0.9136 0.9072 56
6 COREY CRAWFORD 18 281 0.9359 0.9183 55
7 CORY SCHNEIDER 17 252 0.9325 0.9085 60
8 DEVAN DUBNYK 12 231 0.9481 0.9235 65
9 FREDERIK ANDERSEN 29 299 0.9030 0.9176 66

10 HENRIK LUNDQVIST 20 230 0.9130 0.9103 57
11 JAKE ALLEN 22 215 0.8977 0.9148 61
12 JOHN GIBSON 24 269 0.9108 0.9242 52
13 MARTIN JONES 23 254 0.9094 0.9119 65
14 PEKKA RINNE 21 248 0.9153 0.9180 61
15 PETER BUDAJ 19 193 0.9016 0.9168 53
16 PETR MRAZEK 23 250 0.9080 0.9008 50
17 ROBIN LEHNER 16 206 0.9223 0.9205 59
18 SERGEI BOBROVSKY 16 270 0.9407 0.9315 63
19 STEVE MASON 22 180 0.8778 0.9081 58
20 TUUKKA RASK 9 183 0.9508 0.9150 65

Table 1: Early season and end of season save percentage for NHL Goalies in the 2016-2017 season

Player p̂MLE p̂JS pseason MLE MSE JS MSE
1 BRADEN HOLTBY 0.9211 0.9197 0.9249 0.0038 0.0052
2 CAM TALBOT 0.9267 0.9220 0.9193 0.0074 0.0027
3 CAM WARD 0.8817 0.9033 0.9053 0.0236 0.0020
4 CAREY PRICE 0.9637 0.9374 0.9231 0.0406 0.0143
5 CONNOR HELLEBUYCK 0.9136 0.9166 0.9072 0.0064 0.0094
6 COREY CRAWFORD 0.9359 0.9258 0.9183 0.0176 0.0075
7 CORY SCHNEIDER 0.9325 0.9244 0.9085 0.0240 0.0159
8 DEVAN DUBNYK 0.9481 0.9309 0.9235 0.0246 0.0074
9 FREDERIK ANDERSEN 0.9030 0.9122 0.9176 0.0146 0.0054

10 HENRIK LUNDQVIST 0.9130 0.9163 0.9103 0.0027 0.0060
11 JAKE ALLEN 0.8977 0.9100 0.9148 0.0171 0.0048
12 JOHN GIBSON 0.9108 0.9154 0.9242 0.0134 0.0088
13 MARTIN JONES 0.9094 0.9148 0.9119 0.0025 0.0029
14 PEKKA RINNE 0.9153 0.9173 0.9180 0.0027 0.0007
15 PETER BUDAJ 0.9016 0.9116 0.9168 0.0152 0.0052
16 PETR MRAZEK 0.9080 0.9143 0.9008 0.0072 0.0135
17 ROBIN LEHNER 0.9223 0.9202 0.9205 0.0018 0.0003
18 SERGEI BOBROVSKY 0.9407 0.9278 0.9315 0.0092 0.0037
19 STEVE MASON 0.8778 0.9017 0.9081 0.0303 0.0064
20 TUUKKA RASK 0.9508 0.9320 0.9150 0.0358 0.0170

Table 2: Comparison of sample mean (p̂MLE), J-S estimator (p̂JS), and season save percentage
(pseason) and the MSE of the sample mean and J-S estimates
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Figure 2: Mean-Squared Error of MLE (SMMS) vs JS (JSMS) by Player

Figure 3: R Code for James-Stein Estimates
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