
 

 
 
 
 
 
 
 
 

Evaluating Benign and Malignant Breast Tumor Cells from Fine-Needle 
Aspirates 

 
 
Abstract 

Data of 569 Fine-Needle Aspirate (FNA) samples from breast tumors, with records of 10 cell 
nuclear morphology attributes, was taken from the University of Wisconsin. We aimed to discover 
whether there were pairs of attributes that could accurately diagnose breast tumor cell aspirates. A 
conventional decision tree was first constructed to show the four best variables for diagnosing breast 
tumor cell aspirates. This decision tree had a 91% accuracy and the best four variables were area, 
perimeter, concave points, and texture. Bivariate decision trees were constructed using all possible 
pairs of attributes. The best pairs were area and compactness, concave points and texture, and 
concavity and radius (93%). Finally, we created an interactive visualization for users to experiment with 
different combinations of cell nuclear morphology attributes.  
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Background and Significance 
According to the National Breast Cancer Foundation, one in eight women in the United States 

will be diagnosed with breast cancer in her lifetime, making it the second leading cause of cancer death 
among women. Cancers are malignant forms of tumors and are often defined as being able to spread 
throughout the body (Lodish et al 2000). Cancer can be diagnosed through multiple methods. One of 
which is a biopsy. Three common types of biopsies for breast cancer are core-needle biopsy, surgical 
biopsy, and Fine-Needle Aspiration (FNA). FNA allows for a small sample of the tumor to be extracted 
in a non-invasive process, making it a safer method than surgical removal. 

Wolberg and Mangasarian (1999) developed a technique to use visual characteristics of the 
cells to identify malignant and benign tumor cells. They took FNA samples and measured the size, 
shape, and texture cell nuclei. They developed a malignancy analysis algorithm which is 90% correct 
for a set of 119 FNA samples. Samples from their analysis showed that digital images of cells from FNA 
samples can be used to assess tumor cells accurately. We took a different approach to study if there 
are particular nuclei attributes that are more significant than others in determining the malignancy of 
cells. As malignant nuclei are more deformed than benign cells, we hypothesized that the attributes of 
area, concavity, texture, and perimeter are significant classifiers because these measurements together 
characterize the cell nuclei when viewed on a 2D plane and in 3D space.  

To address our research question, we used a Classification and Regression Tree (CART) 
analysis using the rpart package in Rstudio to determine which predictor variables are more significant 
in determining breast tumor cell malignancy. We also constructed a Shiny App to create an interactive 
visual on which two factors are the strongest predictor variables for tumor cell malignancy. We hope our 
Shiny App would make the breast cancer cell data more accessible to others, allowing users to see the 
exact clusters of malignant and benign cells based on the predictor variables chosen. 

 
Methods 
 
I. Data Description 
 We obtained our Breast cancer cell data from the University of Wisconsin’s Machine Learning 
Repository website (Lichman 2013). The data set includes measurements from 569 FNA samples of 
breast tumor cells’ nuclei. The explanatory variable is the diagnosis of the tumor cell (malignant or 
benign) and the predictor variables are radius (µm), texture (grayscale value), perimeter (µm), 
area(µm2), smoothness (µm), compactness, concavity (µm), concave points, symmetry (µm), and 
fractal dimension (µm), all of which are the mean values (table 1). We assume that in each FNA 
sample, if the majority of the tumor cells are malignant, then the tumor is cancerous.  
 
II. Rationale for Independent Variable 

The original breast cancer data set was created by collecting data on ten attributes of cell 
morphology from breast tumor cell aspirates. The original data set provided the mean, standard error, 
and the “worst”(the average of the largest three values). For our project, we decided to only use mean 
values for all attributes. Mean measurements were used by the studies that we referenced (Cui et al. 
2007 and Narasimha et al. 2013) and we wanted our final Shiny App to be in accordance with findings 
by other researchers. The limitation to using mean values is that there may be more overlap of variable 
values than the “worst” values. The mean takes both the lower and upper end of the sample’s 
measurements into account while the “worst” only accounts for the largest values. It is possible that the 
difference between mean values for malignant and benign cells would be smaller and harder to detect. 
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III. CART Analysis 
The purpose of implementing decision tree was to predict the malignancy of breast tumor cell 

aspirates using visible qualities of the cells’ morphology. We created a decision tree with mean 
measurements. By setting a seed for our data, we guaranteed that data could be replicated. We then 
split the data into two-thirds for training and one-third for testing to prevent the model from being over 
fit. We used the training data to create a multivariate decision tree and the testing data to verify the 
accuracy of the the tree by assessing the predictability of the decision tree. Additionally, we created a 
confusion matrix, which is a table summarizing the actual classifications versus the predicted 
classifications. The accuracy was calculated by the following formula: 

ccuracy (Sum of  true positive and negative) / (Number of  all observations)A =    
where true positive and negative are the number of correct predictions from the model and total 
predicted is the sum of both correct and incorrect predictions made with the model for the given testing 
data . We also created a plot for complexity parameter (CP), which indicates how much a node 
improves the tree’s predictability, minimizing cross-validation errors.  We pruned the tree by selecting 
the CP with the smallest cross-validation error (x-error), and compared the accuracy of the pruned tree 
with the unpruned tree. 
 
IV. Shiny App 

To construct the Shiny App, we first created bivariate decision trees using the training data. Just 
like how multivariate decision tree was created, the original data was separated into training and testing 
to build the trees and then assess the accuracy of the trees, respectively. If the decision tree has a poor 
predictability, then a great number of predictions would be inaccurate. This is a non-conventional 
approach to using CART because we used the decision trees to determine which two attributes of cell 
nuclear morphology could construct decision trees that accurately predicted the diagnoses of breast 
tumor cells. In other words, the Shiny App provides a visual to seeing the classification of breast tumor 
cells depending on the visual indicators of a cell’s nucleus, and was constructed in reference to Dennis 
Liu’s Iris App.  

  Bivariate decision trees of all possible combinations for the 10 attributes were created and then 
the accuracy for each tree was evaluated using the testing data. We wanted to see if pruning the trees 
would simplify the decision trees without sacrificing the tree’s accuracy. To know how much to prune 
each bivariate decision tree, we used the smallest complexity parameter (CP), which corresponds to a 
tree with the smallest cross validation error. By assigning a CP value to prune the tree, we obtain 
simpler trees.  To test if accuracy was reduced by pruning, we applied testing data to each of the 
pruned trees. 
 For the final shiny app, we included an interactive scatterplot in addition to a summary table of 
the accuracies for all bivariate decision trees and the plots of the decision trees. With the scatterplot 
users can select the x and y variable from the 10 predictor variables and see the distribution of 
malignant and benign cells. 
 
Results and Discussion 
 
I.  Decision Tree 

The multivariate decision tree was created by using all ten variables with diagnosis. The lowest 
x-error was when CP = 0.015 and the number of nodes was five (fig. 2). The important attributes for the 
tree turned out to be concave points, area, perimeter, and texture. As illustrated in (fig. 1), Each node 
showed the predicted probability and percentage of observations in the node. We evaluated the 
accuracy of the decision tree to be 91.01%. The pruned tree and the original tree had the same 
accuracy; therefore, we decided not to prune the tree since pruning did not improve the accuracy. 
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 II.  Shiny App 

A total of forty five bivariate decision trees were created by pairing one the ten predictor 
variables. We decided not to prune the trees as pruning reduced the accuracy of some models (table 
2). In most of the bivariate decision trees, the CP values suggested that the trees did not need to be 
pruned because the accuracy did not improve with pruning.  We evaluated the accuracy of each 
decision tree by using testing data and found that the accuracy of the decision trees ranged between 
70% to 94% (fig. 3). The highest accuracy was found in the decision tree using the variables area and 
compactness, concave points and texture, and concavity and radius, all of which were 93.87% 
accuracy. The lowest accuracy was found in the decision tree using the variables fractal dimension and 
smoothness (70.07%), and symmetry and fractal dimension (71.43%). The high accuracy of some 
decision trees suggest that particular predictor variable pairs are better indicators in diagnosing breast 
cancer cell malignancy. This is also shown in our app. If users select radius and concavity, they will see 
that the cluster of malignant and benign cells are less diffused than in a scatterplot using symmetry and 
fractal dimension (fig. 4). 

III.  Interpretations and Limitations 
The decision tree using the variables fractal dimension and symmetry have the lowest accuracy, 

suggesting  that these two variables are shared by nuclei from cells of both conditions, therefore 
making it difficult to distinguish malignant and benign cells. The models for compactness and area, and 
concavity and radius have the highest accuracy, which shows that these variable pairs are clear in 
distinguishing benign and malignant cells (fig. 4, 5, 6). Malignant cells often have more deformed nuclei 
than benign cells due to factors such as change in protein expression, loss in nuclear lamina structure, 
mechanical stress from neighboring cells, which may promote the invasiveness of malignant cells 
(Webster et al. 2009, Cui et al. 2007, Narasimha et al. 2013, Lodish et al 2000). When comparing cell 
nuclei by concavity and radius, malignant cells have nuclei with a larger radius and are more concave 
than benign cells (fig. 5). This may reflect the uncontrollable growth of cancerous cells, causing the 
nuclei to increase in size without a proper structure. The concave points and texture model show that 
malignant cells have more concave points than benign cells, which aligns with the fact that malignant 
cells have deformed nuclei (fig. 6). 

A limitation to decision trees is that each tree is only useful for predicting cell malignancy in 
breast cancer cells from a specific population. The data of breast tumor cell aspirates was collected 
from a specific population in Wisconsin, so it is possible that breast tumor cells from people of different 
backgrounds may show different trends in nuclei morphology. We also cannot conclude from these 
decision trees whether a certain pair of variables are more important than others because it is possible 
that a more accurate tree can be constructed if more than two variables are used. Furthermore, the 
trees are not robust compared to a random forest since other features of malignant cells are not taken 
into account. A greater breadth of FNA samples from people of multiple backgrounds can help widen 
the scope of understanding cancer cell nuclei morphology. 
 
Conclusion 

We conclude from the conventional decision tree that breast tumor cell aspirates can be 
classified as malignant or benign with 91% accuracy given the cell nuclear morphology attributes of 
concave points, area, perimeter, and texture. In the bivariate decision tree, the best pairs of attributes 
are area and compactness, concave points and texture, and concavity and radius. Although the 
bivariate decision trees oversimplify the morphological attributes of malignant breast cancer cells, it is a 
useful model for visualizing how breast cancer cells can be distinguished as malignant or benign based 
on visual observations.  For future projects, we are interested in learning advanced techniques such as 
random forest to develop a more holistic model for classification. 
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Appendix 
 
Shiny App: 
https://gubnerkevin.shinyapps.io/breast_cancer_prediction_app/  
 

Attributes Definition 

Radius Average distance from cell center to cell 
perimeter 

Texture Standard deviation of gray-scale values; 
brightness of pixel (Phinyomark et al. 2012). 

Perimeter Distance around nuclear border 

Area Area of nucleus 

Compactness Perimeter2/area  

Smoothness Variation in the cell’s radial lengths 

Concavity Size of indentations in the nuclear border 

Concave points Number of points on an indented section of 
the nuclear border (Mouelhi et al. 2011) 

Symmetry Deviation of nuclei shape from ideal 
(Wolberg, Street, and Mangasarian 1999); 
measured by finding “the relative difference in 
length between line segments perpendicular 
to and on either side of the major axis” 
(Schmitt and Hasse 2008) 

Fractal dimension Measurement of nuclear border irregularity 
(Cross 1997) 

Table 1. Description of cell nuclear morphology attributes. 
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Variables Radius Texture Perimeter Area Smoothness Compactness Concavity Concave 

Points 
Symmetry Fractal 

Dimension 

Radius - -0.006803 0 0 -0.01361 0 0 0 0 0 

Texture - - 0 0 0 -0.06122 -0.06802 -0.02721088
4 

0.01361 0.02721 

Perimeter - - - 0 0 -0.02041 -0.013605442 -0.02040816
3 

0 0 

Area - - - - 0 0 0 0 0 0.01361 

Smoothness - - - - - -0.03401 0 0.006803 0.02041 0 

Compactness - - - - - - 0.01361 0.02721 0.03401 0 

Concavity - - - - - - - -0.01361 -0.02041 0 

Concave 
points 

- - - - - - - - 0 0.01361 

Symmetry - - - - - - - - - 0.01361 

Table 2. Difference in accuracy of pruned to non-pruned bivariate decision trees. 
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Figure 6. Scatterplot of malignant and benign cells by concave points and texture. 

 
Figure 7: Decision tree for area and compactness. This graphic was taken from the shiny app. 
 
 

 
Figure 8: Screenshot of scatter plot from Shiny App. This scatterplot shows the distribution of diagnosis 
when looking specifically at area and compactness. 
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