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Abstract 
 In this project, we study 374 public high schools in New York City. The project seeks to 
use regression techniques generating an optimal model to predict average SAT score given a 
school, and to apply clustering algorithms to group public high schools in New York City.  

Firstly, we visualize the data. Then, checked the assumptions of linear regression model, 
we fit random forest and apply variable-selection methods to linear models. With a given model, 
we use 5-folds cross validation to generate its test error. Lastly, after dimension reduction by 
PCA, we apply K-means to cluster schools and find the most important covariates.  

The study suggests the optimal model is the 2-degree polynomial regression with Lasso, 
and the schools can be clustered into three clusters with emphasis on location and race. This 
project helps students in New York City to select schools, as well as schools to improve 
education. 
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Data 
 This dataset (Kaggle, 2016) consists of a row for every high school in New York City with 
its department ID number, school name, borough, building code, street address, 
latitude/longitude coordinates, phone number, start and end times, student enrollment, race 
breakdown, and average scores on each SAT test section for the 2014-2015 school year. 
 After we select our dataset, we preprocess the data set in such five ways and we have 
25 variables in total. Among these data, there are 10 categorical variables and 15 quantitative 
variables. 

● Delete missing values (374 in total after deleting missing values)  
● Add a variable AvgTotalScore (sum of scores on each section)  
● Add a variable(race_cat) notifying the dominant race of each school  
● Add a variable(School_time) notifying end-time minus start-end  
● Change percentiles to numeric variable data type 

 
1. Visualizations 

 
  We obtain the frequency counts for AvgTotalScore and construct a histogram. The 
median is around 1200. The histogram is skewed to the right, implying there are outliers in the 
high score range. The third quantile is further from the median than the first quantile is. 

We use median and inter-quantile range to describe the center and spread of the 
observations in 5 different boroughs. Outliers are in the high score range, which is consistent 
with the conclusion from the histogram. The scores in Staten Island are apparently higher than 
other boroughs since it has a higher center and smaller spread. Manhattan and Queens have 
similar centers, while Bronx and Brooklyn have similar centers. Five spreads are different. It is 
plausible that scores in different boroughs can differ from each other significantly. Thus, 
Borough could be a potential predictor for AvgTotalScore. 

We plot the side-by-side boxplots to compare set of observations of four races, Asian, 
Black, Hispanic, and White.  White does not have outliers. Though the centers of four races are 
all close to 1200, the spreads are obviously different from each other. It is plausible that scores 
in different races can differ from each other significantly. Thus, race could be a potential 
predictor for AvgTotalScore. 
 
2. Regression Analysis 

The goal of this section is to predict the average SAT scores given eight predictors - 
Borough, Student.Enrollment, Percent.White, Percent.Black, Percent.Hispanic, Percent.Asian, 
Percent.Tested and School_time. Since we have shown Borough and Race has influence on 
AvgTotalScore in the Visualization part, we include Borough and percentages of each race into 
the model. Other quantitative predictors are also included.  
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2.1 Assumption checking 
Before we do linear regression analysis, we check five assumptions of the model- 

linearity, normally distributed errors, constant variance, no outliers and leverage points and 
small collinearity (See Appendix A Linear Assumptions for graphs and interpretation). The 
assumptions are not met well, so we also apply other algorithms to the data. 
 
2.2 Applying 19 models 

We will compare results from 19 techniques (See Appendix B 
Models for specific technique names):  

We use five-folds cross validation to estimate the test errors. 
We present the table of test errors of each model below. According to 
the output table, the 2-degree polynomial model with Lasso gets a 
significantly lower test MSE, which is 7642.741. Consider that Random 
Forest usually has much better prediction power, its test MSE is much 
higher than 7642.741. It implies that the true model should be quite 
similar to the polynomial model with degree 2 given by Lasso (See 
Appendix B Optimal for the equation).  
 
 
 

2.3 Best fitted model  
Thus, we choose 2-degree polynomial model with Lasso as the optimal model. If we 

were to predict a value with the optimal model, the deviation from the true SAT score is 
estimated to be 87.  
 
3. Clustering 

We employ the K-means technique to cluster schools based on Latitude, Longitude, 
Student.Enrollment, Percent.White, Percent.Black, Percent.Hispanic, Percent.Asian, 
Average.Score.SAT.Math, Average.Score.SAT.Reading, Average.Score..SAT.Writing, 
Percent.Tested, School_time. Since some variables among these 12 variables are correlated, 
as the matrix plot shows, we should reduce dimension before we apply clustering methods. 
 
3.1 Dimension Reduction 
 

 
 

After scaling the variables, we apply PCA on these scaled variables. The cumulative 
Proportion is around 0.9 which is a regular threshold, when we have 6 components. Then, we 
use the first six components when applying K-means. 

 
3.2  Important Components 

We use K-means for K =1 to 10. Then we compare the WSS of each number of clusters. 
From plot (See Appendix C WSS plot) that the difference is not significantly large after a certain 
cut-off point. The cut-off point is K=3 or 4 or 5, but we can not tell exactly which one is the cut-
off point by simply looking at the plot. So we apply K-means on K = 3,4,5 respectively. This 
result is actually consistent with our prior information since we have four races and five 
boroughs. 

Fixing the number of cluster, we compare the cluster plots generated by all possible 
pairwise predictors. We find out plots with component2 generally have a neat boundary between 
clusters, while this is not the case for other components. For example, the two plots below are 
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from 3 clusters. The first is component2 vs component4, while the second is component3 vs 
component4 (See Appendix C Important Components for clearer graphs). 
 

                                               
   
3.3 Compare different K 

Then we fix component2 and compare the performances of different number of clusters. 
We find out K = 3 gives the best clustering. Here, we are just going to show component2 vs 
component3 for all three Ks, but all other pairs including component2 show the similar pattern 
(See Appendix C Compare K for clearer graphs). 
 

 
 

We can see that the boundary of three clusters are clearer than other two methods. 
When K = 3, we can see the boundaries are about linear. Inside each cluster, the observations 
are compact. Different clusters spread out from one another. For K = 4 and 5, clusters are 
nested together. The sizes of clusters are different. 

Thus, we conclude there might be three clusters for schools in New York City. The 
component2 is the most important factor in clustering. 

 
3.4 Overall interpretation 
 

 
 

Looking at the component 2 from PCA, we can see Latitude, Percent.Black and 
Percent.Hispanic are important variables because the absolute values of coefficients are much 
larger than other variables. Since we have three clusters, from the plot, we can see the 
observations in the blue cluster has larger latitude, larger Hispanic percentage and smaller 
Black percentage. In the green cluster, three variables are all close to 0. In the red cluster, we 
have a small latitude, large Black percentage, and small Hispanic percentage. Thus, locations 
and race are important when clustering. 
 
4. Limitations 

We only apply polynomial of degree = 2 in regression. Models of higher degree could 
perform better. However, with more than ten variables, higher degreesAppe are very likely to 
overfit. Also, the true model of clustering is unknown, so we are not sure whether the size, 
density and the shape of the clusters do not satisfy the conditions to apply K-means. 
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Appendix A : Linear Regression Model Assumptions 
 
• Linearity Assumptions 
According to scatterplots below, the model seems not linear. Therefore, it may be helpful to run 
a polynomial model later. 
 

 
• Normally distributed errors • Constant Variance 
According to the QQ plot below, the errors     According to the residual plot, there seems   
are roughly normally distributed.     to be no apparent pattern. Thus, the errors 
    have constant variance. 

           
• Small collinearity  

 
According to the correlation matrix, some variables are 
correlated. Therefore, variable selection, such as AIC and BIC 
should be performed later.   
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• No outliers and leverage points  
According to the Added-Variable plots attached in Appendix, the model has several outliers and 
leverage points. 

 
 
Appendix B : Linear Regression Model Assumptions 
 
• Models  
linear model(OLS): OLS / AIC with backward / AIC with forward / AIC with stepwise / BIC with   
backward / BIC with forward / BIC with stepwise / Ridge regression / Lasso regression 
Polynomial: Polynomial / AIC with backward / AIC with forward / AIC with stepwise / BIC with 
backward / BIC with forward / BIC with stepwise / Ridge regression / Lasso regression 
Random Forest 
 
• Optimal 
AvgTotalScore = 1236.13 + 18.73 * School_time - 0.000019 * Student_Enrollment2 - 115.93 
*Percent.Black2 - 192.62 * Percent.Hispanic2 - 579.56 * Percent.Asian2 + 663.92 
*Percent.Tested2 -48.96 *Borough * Percent.White - 7.16 * Borough * Percent.Black + 14.06 * 
Borough* Percent.Hispanic + 76.20 * Borough * Percent.Asian - 0.097*Student.Enrollment * 
Percent.White - 0.104 * Student.Enrollment * Percent.Hispanic + 0.0028 * Student.Enrollment * 
Percent.Asian + 0.12 * Student.Enrollment * Percent.Tested  + 0.00157 * Student.Enrollment * 
School_time - 66.75 * Percent.White * Percent.Black -210.42 * Percent.White * 
Percent.Hispanic + 312.80 * Percent.White * Percent.Asian + 10.17 * Percent.White * 
School_time + 0.89 * Percent.Black * Percent.Hispanic - 708.25 * Percent.Black * Percent.Asian 
- 614.55 * Percent.Black * Percent.Tested - 1514.41 * Percent.Hispanic * Percent.Asian - 
737.37 * Percent.Hispanic * Percent.Tested 
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Appendix C : Clustering 
 
• WSS plot  

 
WSS is within cluster sum of squares (SSE).  WSS = ∑k∑ x∈Ck ||x − mk ||2 The larger k is, the 
smaller WSS is. For each k, we run K-means for 10 times to pick the smallest WSS. Difference 
of WSS is obtained by subtracting WSS of smaller k from WSS of larger k, e.g. WSS2 – WSS1. 
The larger the difference is, the more significant the increase of k is. Here the difference levels 
off from k=3 or 4 or 5. 
 
• Important Component 

 
component2 vs component4   component3 vs component4 
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• Compare K 

 
        K = 3             K = 4       K = 5 

 


