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Abstract 

The incidence of adult acute myeloid leukemia (AML) continues to rise and currently, this blood 
pathology accounts for over 10,000 deaths among US adults each year. In this paper, we sought to model 
the likelihood that an individual diagnosed with AML will relapse after a complete remission is achieved 
using logistic modeling methodologies.  Initially, a large host of factors from clinical and disease data were 
investigated, but subsequent analyses later revealed that age at diagnosis and cytogenetic risk level were 
the most influential factors contributing significant predictive information to the model. The logistic model 
developed here will likely be of value to the oncology field and those afflicted with AML. 



Introduction 
 Acute myeloid leukemia (AML) is the most common type of acute leukemia among US adults, 
characterized by the infiltration of cancer cells in the hematopoietic system, and accounting for over 10,000 
deaths in the US last year alone [1]. Currently, most individuals diagnosed with AML receive high-dose 
chemotherapy in an attempt to achieve a complete remission, indicating there is no evidence of disease [2]. 
However, despite this rigorous treatment regimen, for a large majority of patients, their AML will recur, 
meaning that undetected, residual disease persists and progresses so that it is once again clinically 
appreciable [3]. Predicting which AML patients are most likely to experience a relapse or recurrence of 
their disease could have tremendous prognostic value and aid physicians in treatment decisions. This project 
sought to model the likelihood that the AML of a diagnosed adult will relapse once complete remission is 
achieved based on clinical and tumor characteristics. Although there are numerous tumor and clinical 
characteristics, many of which are out of the scope of this analysis. Therefore, the following factors were 
investigated: age at diagnosis, sex, peripheral blood and bone marrow myeloblast count, white blood cell 
count, cytogenetic and molecular risk levels, and AML subtypes of the French-American-British (FAB) 
classification system. Clinical and tumor data from a 2013 New England Journal of Medicine study was 
utilized and publicly accessible from The Cancer Genome Atlas [4]. 
 
Methodology 
 AML recurrence greatly diminishes the prognosis of a patient and is likely influenced by a host of 
factors. To investigate how the aforementioned factors influence the likelihood of AML recurrence, we 
mined publicly-accessible data from The Cancer Genome Atlas for patients enrolled in a 2013 study, 
n=200, but due to the incompleteness of some patient data, our sample size was reduced to 175 patients. 
After the raw data was downloaded, we performed further data processing in accord with the parameters 
required for logistic modeling. We formatted the response variable, disease response (y), as a binary 
variable, coding it as a dummy variable with y=1 if the patient was disease free and y=0 if the patient’s 
disease recurred. Accordingly, we transformed the non-continuous variables (FAB, cytogenetic risk level 
and molecular risk level) to be interpreted as categorical variables.  
 We then generated a generalized logistic model, using all variables mentioned above as factors 
influencing disease response. To determine the overall adequacy of this model, a Chi-square test was 
performed, with the following null hypothesis, H0: b1 =b2 =… bk=0 where k=17, and the following 
alternative hypothesis, Ha: at least one bi is different from zero for i=1,2…k.  After computing the Chi-
square test for the complete logistic model, we determined that additional models would likely more 
adequately model the data of interest. As a result, model selection was performed using stepwise elimination 
in the backward direction to determine which, of all the embedded models, best approximates the given 
data. Optimal selection of the returned models was based upon the Akaike Information Criterion (AIC) 
results under the assumption that the model having the lowest AIC is the best model. As some models were 
considered indistinguishable (AIC difference < 2), we opted to select the most parsimonious of models, 
thereby eliminating factors that didn’t contribute to this model. A subsequent Chi-square test was then 
computed for the newly selected model. Further, summary data returned from the refined model indicate 
that both remaining factors contribute significant information to the response variable. Wald confidence 
intervals for the parameter coefficients of the refined model were then computed. We also sought to 
visualize our refined model and did so by plotting the response variable by each respective predictor value. 
Last, we utilized the refined model, which predicts disease response according to age and cytogenetic risk 
level, to predict the odds of an individual staying disease free at different values of these factors.  
 
Analysis 
  Initially, a complete logistic model, including all factors, was employed to predict the binomial 
response variable, AML disease response. Yet, upon closer examination of this model with the Chi-square 
test and the t-tests of coefficient estimates, we inferred that additional models may better model the given 
data, although the complete model was technically adequate for modeling the data with only one coefficient 
estimate less than 0.05, thereby allowing us to reject the null hypothesis. 



Nevertheless, we performed stepwise model selection using backward elimination to arrive at the 
best model. As the simplest of models and one with an AIC of 234.23, we selected the logistic model with 
patient age at diagnosis and cytogenetic risk levels as the contributing factors for predicting AML disease 
response. Further inspection of the adequacy of the refined model with a Chi-square test revealed that at 
least one coefficient estimate was different from zero (ps <0.005, 0.05), thereby allowing us to reject the 
null hypothesis and conclude that the refined model is adequate for predicting disease response. Moreover, 
additional t-tests of the different factors, as shown in the summary data of the refined model, suggest that 
both predictor variables, age and cytogenetic risk, are significant in explaining disease response with 
verification from the resulting p-values of 0.04224 and 0.00527, respectively.  

The refined logistic model equation can be expressed as: ln p
#$p

= b& + b#𝑥#+	b*𝑥*	 + 	b+𝑥+	. 
Adding the coefficient estimates produces the following model equation: ln p

#$p
== −0.545 − 1.073𝑥# +

0.134𝑥*	 + 0.021𝑥+	. Considering the nature of the data, there is no reason to interpret the coefficient of 
the intercept as no individual of age zero will be diagnosed with adult AML. Alternatively, interpreting the 
other coefficient estimates may provide valuable insight into AML disease response. For each additional 
year of age at diagnosis (x3), the log odds of staying disease free (not recurring) increases by 0.021, holding 
cytogenetic risk level constant. Being placed in the intermediate cytogenetic risk level, compared to the 
poor cytogenetic risk level, decreases the log odds of staying disease free by 1.073, holding age constant. 
Conversely, being placed in the good cytogenetic risk level, compared to the poor cytogenetic risk level, 
increases the log odds of staying disease free by 0.134, holding age constant. Confidence intervals show 
with 95% confidence that the true value of the slope coefficient for age is between 0.00074 and 0.0416, for 
the intermediate cytogenetic risk level is between -1.826 and -0.3192, and for good cytogenetic risk level 
is between -0.8324 and 1.1001, which all coincide with the coefficient estimates in the model equation. 
 
Results 
 In general, the age at diagnosis and cytogenetic risk level contributed the most significant predictive 
information for AML disease response. A large host of factors were initially considered in our model, but 
after numerous tests and model selection were performed, many variables were excluded due to their lack 
of significance. Accordingly, the best fitting model, which included the two factors (three dummy variables) 
was selected due to the AIC score, Chi-square and t- test results.  
 The logistic model generated and selected here affords an individual with the ability to predict the 
likelihood of an AML patient staying disease free versus relapsing by considering two factors. We sought 
to put our logistic model to the test for predicting the chance of staying disease free of two hypothetical 
AML patients, whom were diagnosed at the ages of 35 and 70, at each respective cytogenetic risk level. At 
the age of 35, our fitted model predicted that the probability an individual stays disease free in the poor risk 
level to be 54.9%, in the intermediate level to be 29.4%, and in the good level to be 58.2%. Comparably, 
the fitted model predicts the 70-year-old to fare much better with a 71.8% likelihood in the poor level, 
46.6% likelihood in the intermediate level, and 74.5% likelihood in the good level of staying disease free. 
The influence of age at diagnosis may seem contrary to intuition considering that younger patients typically 
can endure longer courses of high-dose chemotherapy due to a more rapidly regenerating hematopoietic 
system, thereby increasing their overall survival rate [2]. However, it is notable to clarify that this model 
predicts for the likelihood of staying AML free, only once a complete remission of disease has already been 
achieved. Therefore, older patients may, in fact, have a better likelihood of staying disease free if a complete 
remission is achieved, thus potential criticisms of the effect of age as an artifact can be dismissed. 
 The fitted logistic model generated for this project was based upon publicly-accessible data of adult 
AML patients stored in The Cancer Genome Atlas. As this model is based upon the patient data from a 
single study, future work could incorporate additional data from past and prospective studies alike to 
increase the robustness of this model.  Furthermore, while this model may be of less relevance and value to 
the general population, the unfortunate truth is that with the American Cancer Society predicting over 
20,000 new cases of adult AML to occur in 2017 alone, many patients, family members, friends and 
professionals in the field of oncology, would likely find significant value in the utility of this model [5].  
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Appendix 
RStudio Code 
# Import dataset 
> data <- read.csv(file.choose()) 
# Convert FAB, Cyogenetic and molecular risk level to categorical variables 
data$FAB <- factor(data$FAB) 
data$Cyto <- factor(data$Cyto) 
data$Molec <- factor(data$Molec) 
# Fit logistic model including all parameters 
> logfitx <- glm(DFS ~ AGE+FAB+BM.Blast+PB.Blast+Cyto+Molec+Sex+WBC, data=data, 
family=”binomial”) 
> summary(logfitx) 
# Test the overall adequacy of the model with Chi-Square test  
> anova(logfitx, test="Chisq") 
# Perform model selection with backward selection  
> summary(step(logfitx, direction="backward")) 
# Fit new logistic model selected by backward selection 
> logfitx4 <- glm(data$DFS ~ data$Cyto + data$AGE, family="binomial") 
> summary(logfitx4) 
# Test the overall adequacy of the selected model 
> anova(logfitx4, test="Chisq") 
# Investigate parameter coefficients of selected model 
> exp(coef(logfitx4)) 
# Compute Wald confidence intervals using standard error 
> confint.default(logfitx4) 
# Display variable average 
> mean(data$AGE) 
# Generate log plots 
> plot(jitter(data$DFS, factor=0.5)~data$Cyto, ylab="Disease Response", xlab="Cytogenic Risk Level") 
> plot(jitter(data$DFS, factor=0.5)~data$AGE, ylab="Disease Response", xlab="Age at Diagnosis") 
# Make predictions for AML-diagnosed 35 year-old with fitted model by cytogenic risk level 
# For poor cytogenic risk level 
> pp_poor35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0+coef(logfitx4)[3]*0 +coef(logfitx4)[4]*35) 
> pred_poor35<-exp(pp_poor35)/(1+exp(pp_poor35)) 
> pred_poor35 
# For intermediate cytogenic risk level 
> pp_int35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*1+coef(logfitx4)[3]*0 +coef(logfitx4)[4]*35) 



> pred_int35<-exp(pp_int35)/(1+exp(pp_int35)) 
> pred_int35 
# For good cytogenic risk level 
> pp_good35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0+coef(logfitx4)[3]*1 +coef(logfitx4)[4]*35) 
> pred_good35<-exp(pp_good35)/(1+exp(pp_good35)) 
> pred_good35 
# Make predictions for AML-diagnosed 70 year-old with fitted model by cytogenic risk level 
# For poor cytogenic risk level 
> pp_poor70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0+coef(logfitx4)[3]*0 +coef(logfitx4)[4]*70) 
> pred_poor70 <-exp(pp_poor70)/(1+exp(pp_poor70)) 
> pred_poor70 
# For intermediate cytogenic risk level 
> pp_int70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*1+coef(logfitx4)[3]*0 +coef(logfitx4)[4]*70) 
> pred_int70<-exp(pp_int70)/(1+exp(pp_int70)) 
> pred_int70 
# For good cytogenic risk level 
> pp_good70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0+coef(logfitx4)[3]*1 +coef(logfitx4)[4]*70) 
> pred_good70<-exp(pp_good70)/(1+exp(pp_good70)) 
> pred_good70 

RStudio Output 

> data <- read.csv(file.choose()) 
> head(data) 
  AGE DFS FAB BM.Blast PB.Blast Cyto Molec    Sex  WBC 
1  52   1  M2       67       18    2     2 Female  4.1 
2  61   1  M3       73       68    2     2 Female 86.4 
3  55   1  M4       35        8    2     2   Male 22.2 
4  74   1  M3       51        0    2     2   Male 31.5 
5  42   1  M3       88        2    2     2   Male  2.1 
6  43   1  M2       40       39    2     2   Male  4.3 
 
> data$FAB <- factor(data$FAB) 
> data$Cyto <- factor(data$Cyto) 
> data$Molec <- factor(data$Molec) 
 
> summary(logfitx) 
Call: 
glm(formula = dat$DFS ~ dat$FAB + dat$Cyto + dat$Molec + dat$PB.Blast +  
    dat$BM.Blast + dat$WBC + dat$Sex + dat$AGE, family = "binomial") 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.9453  -1.0262  -0.3967   1.0327   1.8213   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)   
(Intercept)   1.277e+00  1.268e+00   1.007   0.3138   
  



dat$FABM1    -6.721e-01  6.633e-01  -1.013   0.3109   
dat$FABM2    -5.811e-01  6.937e-01  -0.838   0.4022   
dat$FABM3    -1.085e+00  9.858e-01  -1.100   0.2711   
dat$FABM4     6.450e-02  6.914e-01   0.093   0.9257   
dat$FABM5    -1.087e+00  8.077e-01  -1.346   0.1784   
dat$FABM6     1.697e+01  1.355e+03   0.013   0.9900   
dat$FABM7     9.292e-01  1.574e+00   0.590   0.5550   
dat$FABnc    -1.501e+01  2.400e+03  -0.006   0.9950   
dat$Cyto1     1.313e+00  8.225e-01   1.597   0.1104   
dat$Cyto2     2.911e-01  1.748e+00   0.167   0.8677   
dat$Molec1    1.494e-01  7.567e-01   0.197   0.8435   
dat$Molec2   -2.424e-02  1.801e+00  -0.013   0.9893   
dat$PB.Blast  8.970e-03  7.875e-03   1.139   0.2547   
dat$BM.Blast -5.741e-03  1.080e-02  -0.531   0.5952   
dat$WBC      -2.614e-03  3.968e-03  -0.659   0.5100   
dat$SexMale  -2.811e-01  3.483e-01  -0.807   0.4197   
dat$AGE      -2.571e-02  1.186e-02  -2.168   0.0302 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 242.55  on 174  degrees of freedom 
Residual deviance: 209.73  on 157  degrees of freedom 
AIC: 245.73 
 
Number of Fisher Scoring iterations: 15 
 
> anova(logfitx, test="Chisq") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: DFS 
 
Terms added sequentially (first to last) 
 
         Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                       174     242.55             
AGE       1   3.3666       173     239.18 0.066531 .  
FAB       8  15.2105       165     223.97 0.055179 .  
BM.Blast  1   0.0479       164     223.93 0.826748    
PB.Blast  1   0.2544       163     223.67 0.613971    
Cyto      2  12.8421       161     210.83 0.001627 ** 
Molec     2   0.0283       159     210.80 0.985934    
Sex       1   0.6404       158     210.16 0.423570    
WBC       1   0.4308       157     209.73 0.511588    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  



> summary(step(logfitx, direction="backward")) 
Start:  AIC=245.73 
DFS ~ AGE + FAB + BM.Blast + PB.Blast + Cyto + Molec + Sex +  
    WBC 
 
           Df Deviance    AIC 
- Molec     2   209.78 241.78 
- FAB       8   222.65 242.65 
- BM.Blast  1   210.01 244.01 
- WBC       1   210.16 244.16 
- Sex       1   210.38 244.38 
- Cyto      2   212.71 244.71 
- PB.Blast  1   211.04 245.04 
<none>          209.73 245.73 
- AGE       1   214.62 248.62 
 
Step:  AIC=241.78 
DFS ~ AGE + FAB + BM.Blast + PB.Blast + Cyto + Sex + WBC 
 
           Df Deviance    AIC 
- FAB       8   222.80 238.80 
- BM.Blast  1   210.10 240.10 
- WBC       1   210.19 240.19 
- Sex       1   210.43 240.43 
- PB.Blast  1   211.12 241.12 
<none>          209.78 241.78 
- AGE       1   214.79 244.79 
- Cyto      2   222.91 250.91 
 
Step:  AIC=238.8 
DFS ~ AGE + BM.Blast + PB.Blast + Cyto + Sex + WBC 
 
           Df Deviance    AIC 
- Sex       1   222.85 236.85 
- WBC       1   223.20 237.20 
- BM.Blast  1   224.33 238.33 
<none>          222.80 238.80 
- PB.Blast  1   224.98 238.98 
- AGE       1   225.98 239.98 
- Cyto      2   236.95 248.95 
 
Step:  AIC=236.85 
DFS ~ AGE + BM.Blast + PB.Blast + Cyto + WBC 
 
           Df Deviance    AIC 
- WBC       1   223.24 235.24 
- BM.Blast  1   224.45 236.45 
<none>          222.85 236.85  



- PB.Blast  1   225.12 237.12 
- AGE       1   226.00 238.00 
- Cyto      2   237.05 247.05 
 
Step:  AIC=235.24 
DFS ~ AGE + BM.Blast + PB.Blast + Cyto 
 
           Df Deviance    AIC 
- BM.Blast  1   224.99 234.99 
- PB.Blast  1   225.12 235.12 
<none>          223.24 235.24 
- AGE       1   226.47 236.47 
- Cyto      2   237.07 245.07 
 
Step:  AIC=234.99 
DFS ~ AGE + PB.Blast + Cyto 
 
           Df Deviance    AIC 
- PB.Blast  1   226.23 234.23 
<none>          224.99 234.99 
- AGE       1   227.96 235.96 
- Cyto      2   237.77 243.77 
 
Step:  AIC=234.23 
DFS ~ AGE + Cyto 
 
       Df Deviance    AIC 
<none>      226.23 234.23 
- AGE   1   230.50 236.50 
- Cyto  2   239.18 243.18 
 
Call:  glm(formula = DFS ~ AGE + Cyto, family = "binomial", data = data) 
 
Coefficients: 
(Intercept)          AGE        Cyto1        Cyto2   
   -0.54529      0.02119     -1.07282      0.13389   
 
Degrees of Freedom: 174 Total (i.e. Null);  171 Residual 
Null Deviance:     242.6  
Residual Deviance: 226.2  AIC: 234.2 
 
> logfitx4 <- glm(data$DFS ~ data$Cyto + data$AGE, family="binomial") 
> summary(logfitx4) 
 
Call: 
glm(formula = data$DFS ~ data$Cyto + data$AGE, family = "binomial") 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.7008  -1.0684   0.7396   1.0450   1.6986   
  



Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.54529    0.66912  -0.815  0.41511    
data$Cyto1   -1.07282    0.38451  -2.790  0.00527 ** 
data$Cyto2    0.13389    0.49300   0.272  0.78594    
data$AGE      0.02119    0.01043   2.031  0.04224 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 242.55  on 174  degrees of freedom 
Residual deviance: 226.23  on 171  degrees of freedom 
AIC: 234.23 
 
Number of Fisher Scoring iterations: 4 
 
> anova(logfitx4, test="Chisq") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: data$DFS 
 
Terms added sequentially (first to last) 
 
 
         Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                       174     242.55             
datal$Cyto  2  12.0492       172     230.50 0.002419 ** 
data$AGE   1   4.2719       171     226.23 0.038747 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> exp(coef(logfitx4)) 
 (Intercept)   data$Cyto1   data$Cyto2     data$AGE  
  0.5796759   0.3420436   1.1432675   1.0214166 
 
> exp(coef(logfitx4))-1 
 ((Intercept)   data$Cyto1   data$Cyto2     data$AGE  
-0.42032413 -0.65795635  0.14326751  0.02141662 
 
> confint.default(logfitx4) 
   2.5 %      97.5 % 
(Intercept) -1.8567343734  0.76616203 
data$Cyto1   -1.8264377497 -0.31919609 
data$Cyto2   -0.8323759238  1.10015673 
data$AGE      0.0007430819  0.04163793 
 
> mean(data$AGE) 
[1] 54.33143  



> data$Cyto = factor( data$Cyto, levels = 0:2, abels = c("Poor", "Intermediate", "Good")) 
> plot(jitter(data$DFS, factor=0.5)~data$Cyto, ylab="Disease Response", xlab="Cytogenic Risk Level") 
 

 
> plot(jitter(data$DFS, factor=0.5)~data$AGE, ylab="Disease Response", xlab="Age at Diagnosis") 

 
  



# Make predictions for AML-diagnosed 35 year-old with fitted model by cytogenic risk level 
# For poor cytogenic risk level 
> pp_poor35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0 
+               +coef(logfitx4)[3]*0 +coef(logfitx4)[4]*35) 
> pred_poor35<-exp(pp_poor35)/(1+exp(pp_poor35)) 
> pred_poor35 
(Intercept)  
  0.5489382 
# For intermediate cytogenic risk level 
> pp_int35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*1 
+               +coef(logfitx4)[3]*0 +coef(logfitx4)[4]*35) 
> pred_int35<-exp(pp_int35)/(1+exp(pp_int35)) 
> pred_int35 
(Intercept)  
  0.293917  
# For good cytogenic risk level 
> pp_good35 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0 
+               +coef(logfitx4)[3]*1 +coef(logfitx4)[4]*35) 
> pred_good35<-exp(pp_good35)/(1+exp(pp_good35)) 
> pred_good35 
(Intercept)  
  0.5818255 
# Make predictions for AML-diagnosed 70 year-old with fitted model by cytogenic risk level 
# For poor cytogenic risk level 
> pp_poor70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0 
+               +coef(logfitx4)[3]*0 +coef(logfitx4)[4]*70) 
> pred_poor70 <-exp(pp_poor70)/(1+exp(pp_poor70)) 
> pred_poor70 
(Intercept)  
 0.7187054 
# For intermediate cytogenic risk level 
> pp_int70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*1 
+               +coef(logfitx4)[3]*0 +coef(logfitx4)[4]*70) 
> pred_int70<-exp(pp_int70)/(1+exp(pp_int70)) 
> pred_int70 
(Intercept)  
   0.466359 
# For good cytogenic risk level 
> pp_good70 <- (coef(logfitx4)[1] + coef(logfitx4)[2]*0 
+                 +coef(logfitx4)[3]*1 +coef(logfitx4)[4]*70) 
> pred_good70<-exp(pp_good70)/(1+exp(pp_good70)) 
> pred_good70 
(Intercept)  
  0.7449656  
 


