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Abstract: 
Though the Mann-Whitney U-test and permutation tests are often used in cases where 
distribution assumptions for the two-sample t-test for equal means are not met, it is not widely 

understood how the powers of the two tests compare. Our goal was to discover under what 
circumstances the Mann-Whitney test has greater power than the permutation test. The tests’ 
powers were compared under various conditions simulated from the Weibull distribution. Under 
most conditions, the permutation test provided greater power, especially with equal sample 
sizes and with unequal standard deviations.  However, the Mann-Whitney test performed better 
with highly skewed data. 
 

  



Background and Significance: 

In many psychological, biological, and clinical trial settings, distributional differences 
among testing groups render parametric tests requiring normality, such as the z test and t test, 
unreliable. In these situations, nonparametric tests become necessary. Blair and Higgins (1980) 
illustrate the empirical invalidity of claims made in the mid-20th century that t and F tests used to 
detect differences in population means are highly insensitive to violations of distributional 
assumptions, and that non-parametric alternatives possess lower power. Through power 
testing, Blair and Higgins demonstrate that the Mann-Whitney test has much higher power 
relative to the t-test, particularly under small sample conditions. This seems to be true even 
when Welch’s approximation and pooled variances are used to “account” for violated t-test 
assumptions (Glass et al. 1972). 
 With the proliferation of powerful computers, computationally intensive alternatives to the 
Mann-Whitney test have become possible. The computationally intensive permutation test offers 
a non-parametric solution to non-normality like the rank-based Mann-Whitney test.1 At the price 
of computing power, permutation methods retain information on the magnitude and variability 
within data. This improved information preservation, coupled with the precision we might expect 
from a more computationally intensive method, suggests the permutation test may be a more 
powerful alternative to the Mann-Whitney test. In this paper, we present the results of power 
testing the permutation and Mann-Whitney methods under various sample and distribution 
conditions. 
 

Power: 
For our analysis, power is used to assess the performance of the Mann-Whitney and 

permutation methods. In statistical hypothesis testing, power is the probability that we will 
correctly reject the null hypothesis. In other words, when the null hypothesis is incorrect and 
should be rejected, power is the likelihood that we detect significant evidence and do indeed 
reject the null. Tests with high power are particularly important in the sort of early-stage 
research we are trying to simulate. Poor power can be the difference between advancing an 
important idea to the forefront of research and mistakenly filing the idea away to collect dust. It 
is essential that the methods that offer high power be identified and employed in scientific 
research. 

 

Methods: 
We compared the powers of the permutation test and Mann-Whitney test under various 

condition combinations using simulations.2  For each comparison, a random sample was taken 
from two distributions under the specified conditions. The samples were compared using the 
permutation test with 10,000 iterations and the Mann-Whitney test.3  This sampling and 
comparison procedure was then repeated 10,000 times for the combination of conditions, and 
the empirical power was calculated for both tests under the given combination of 
conditions.4  Data was sampled from the two-parameter Weibull distribution.5 The Weibull is 
particularly versatile as its shape and skewness can be modified with the Weibull shape 

                                                             
1 Also referred to as the Mann-Whitney-Wilcoxon test and Wilcoxon rank-sum test, this test 
compares the rankings of the elements of both groups when sorted. For more information on 
this test, see S. Kuiper and J. Sklar’s Practicing Statistics (2013). 
2 Refer to Appendix 1 for the R simulation code. 
3 Due to the time needed to run permutation tests, we limited each test to 10,000 iterations. 
4 To better understand consistency of each test, we ran every test three times and took the 
mean of the resulting powers. 
5 For information on the Weibull distribution, see R. Pruim’s Foundations and Applications of 
Statistics (2011). 



parameter (k), and its mean and variance can be modified with the Weibull scale parameter (γ) 

(Papulous and Pillai 2002). This property allows the Weibull to approximate other probability 
distributions.6 

 

Conditions: 

The following factor levels were chosen to simulate varying types of distributions that 
could arise in research situations: 

 Shape parameters of 1, 2, and 3 were used to approximate highly-skewed, moderately-
skewed, and symmetric distributions respectively.  

 Sample size pairs of (n1 = 10, n2 = 10), (n1 = 10, n2 = 30), and (n1 = 30, n2 = 30) allow us 
to consider respectively the small, unbalanced, and large samples often found in early-
stage research.  

 Mean differences7 of 1, 1.5, and 2 provide cases where power varies greatly with other 
conditions, allowing us to detect possible power differences between the two tests.  

 Standard deviations of 1, 2, and 4 in the second distribution allow us to assess power in 
homoscedastic, borderline heteroscedastic, and highly heteroscedastic instances.8 

We manipulated the Weibull scale parameter to produce the desired standard deviations in our 
Weibull distributions. The standard deviation of the underlying distribution of the first sample is 
always 1. The above factors motivate 34, or 81, possible conditions under which we compare 

the Mann-Whitney and permutation methods. 
Fig. 1 shows an example of two Weibull 
distributions we used in our simulation 
analysis. 

 
Results: 

We calculated the empirical powers for 
each of three repetitions to ensure that any 
observed differences were consistent. As the 
maximum observed standard deviation 
between the three powers from repeated trials 
of the same condition was .0097, it is 
reasonable to believe that mean power 
differences greater than .02 are not due to 
chance. 

For the distributions shown in Fig. 1, 
we see a sizable difference in the powers of 
the permutation test (0.7658) and Mann-
Whitney test (0.6812).9 We see even larger 
power differences whenever the two 

                                                             
6 Particularly of interest was the Weibull distribution’s ability to approximate the exponential and 
normal distributions. For more information on these distributions, see R. Pruim’s Foundations 
and Applications of Statistics (2011). 
7 Here, defined as the difference between the mean of the two Weibull distributions. In these 
simulations, the distribution with the smaller standard deviation always had the lower mean. 
8 Homoscedasticity is often informally assumed when the maximum sample standard deviation 
is less than two times as large as minimum sample standard deviation. 
9 Refer to Appendix 3 for results from all 81 conditions. 

Figure 1. Probability density plots for two 

Weibull distributions being compared. Both 
distributions have shape parameter 3. The 
pink distribution has a standard deviation of 1 
and the blue distribution has a standard 
deviation of 2. The difference in means 
between the two distributions is 2. 
 



distributions are skewed, have a 
large mean difference, and 
exhibit extreme 
heteroscedasticity.  
 Fig. 2 shows the power 
curves for all distributions we 
tested with shape parameter 3 
and sample sizes n1 = 10 and n2 
= 10.10 The points on the P2 and 
MW2 curves with mean 
difference 2 correspond to the 
scenario shown in Fig. 1. Notice 
that as heteroscedasticity 
increases, we see a greater 
difference between the powers of 
the two tests. 
 

Discussion: 

 
Under most conditions, 

the permutation test provided 
higher power. This trend holds in all relevant subsets of the data except when Weibull shape is 
1, as we will discuss shortly.  The permutation test had higher power when sample sizes were 
equal, and performed particularly well when both samples had size 30. Even when sample sizes 
were unequal, permutation tests outperformed Mann-Whitney tests, though by a smaller margin. 
The permutation test was also fairly robust to unequal standard deviations. Generally we find 
that when relative sample sizes differ or heteroscedasticity is present, the permutation method 
offers the better alternative. 

The only instances in which the Mann-Whitney test performed better were under highly 
skewed distributions, i.e. when Weibull shape was 1. Blair and Higgins (1980) find a similar 
result when comparing the t-test and Mann-Whitney test. We attribute this outcome to the way 
we specified our permutation method to evaluate differences in means. Means are highly 
sensitive to skewed distributions as a few extreme values can have great weight on the 
average. A ranking system, as used in the Mann-Whitney test, does not account for the 
magnitude of data and is robust to such pull from extreme observations. Perhaps using 
permutation tests to evaluate medians instead of means would have avoided such bias. In 
further research, using a median-specified permutation test may allow the permutation test to 
perform better in all possible instances. With a mean specification, however, the Mann-Whitney 
should be used when data is highly skewed. 

This paper provides a guideline for early stage research and other instances in which 
testing assumptions are frequently violated. As explicated in past work, when normality cannot 
be assumed, parametric methods fall drastically short of non-parametric tests. We show that in 
almost all instances, the mean-specified permutation test offers a much more powerful 
alternative to the Mann-Whitney test. Only in instances where, even after transformations, 
distributions are very highly skewed, should the Mann-Whitney test be used instead. Choosing 
the optimal test can maximize power, improving the likelihood that researchers correctly detect 
significant differences. 

 

                                                             
10 Refer to Appendix 2 for the full set of power curves for each of the comparisons we 
conducted. 

Figure 2. Power curves for Weibull distributions with 

shape parameter 3, sample sizes n1 = 10 and n2 = 10. 
Red curves are for the permutation test and blue curves 
are for the Mann-Whitney test. The numbers in the 
legend refer to the standard deviation of the second 
distribution (s.d. of the first distribution is always 1). 
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Appendices: 
 

(1) R Code for Simulations: 

 
# Run permutation test 

randtest <- function(x,y,fun=mean,reps) { 

#n = sample size; m = no. in x 

 n <- length(x) 

 m <- length(y) 

 data <- c(x,y) 

# Store results in a numeric vector 

 results <- numeric(reps) 

#Run the permutation reps times 

 for (i in 1:reps) { 

   simtemp <- sample(data) 

   results[i] <- fun(simtemp[1:n])-fun(simtemp[(n+1):(n+m)]) 

 } 

#Find differences 

 test.stat <- abs(fun(x)-fun(y)) 

 two.sided.p <- sum(abs(results)>=test.stat)/reps 

 return(list(results=results,two.sided.p=two.sided.p,test.stat=test.st

at)) 

} 

 

############ 

# Run simulations 

simulation <- function(n1,n2, shape, scale, mean,  

                      simreps, randreps) { 

#Create vectors to store results 

 resultsr <- numeric(simreps) 

 resultsmw <- numeric(simreps) 

#Run simpreps simulations 

 for (i in 1:simreps) { 

#Generate data from Weibull distributions 

   x <- rweibull(n1,shape,scale) 

   y <- rweibull(n2,shape,scale)+ 

     mean*weibullparinv(shape,scale)$sigma/sqrt(n2) 

#Find p-values for both Mann-whitney and permutation tests 

   resultsr[i] <- randtest(x,y,reps=randreps)$two.sided.p 

   resultsmw[i] <- wilcox.test(x,y,alternative= 

                                 c("two.sided"))$p.value } 

#Calculate Type II error 

 rerror.p <- sum(resultsr >= 0.05)/simreps 

 mwerror.p <- sum(resultsmw >= 0.05)/simreps 

#Calculate power 

rpower <- 1-rerror.p 

 mwpower <- 1-mwerror.p 

 return(list(rerror.p=rerror.p,mwerror.p=mwerror.p,resultsr=resultsr,r

esultsmw=resultsmw)) } 

 

 



############### 

# Simulation run 3 times 

#Create vectors to store results 

rpowers <- numeric(3) 

mwpowers <- numeric(3) 

#Run tests three times 

for (i in 1:3) { 

 # sim1 <- simulation(n1,n2, shape, variance, mean, simreps, randreps) 

 sim1 <- simulation(10,10, 1, 1, 1.5, 10000, randreps=10000) 

#Store powers from 3 tests 

 rpowers[i] <- sim1$rpower 

 mwpowers[i] <- sim1$mwpower 

} 

 

 

  



(2) Power Curves:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shape = 3, n1 = 30, n2 = 30 Shape = 3, n1 = 10, n2 = 30 

Shape = 1, n1 = 10, n2 = 10 Shape = 1, n1 = 10, n2 = 30 

Shape = 2, n1 = 10, n2 = 30 

Shape = 2, n1 = 10, n2 = 10 Shape = 1, n1 = 30, n2 = 30 

Shape = 2, n1 = 30, n2 = 30 

Figure 3. Power curves for Weibull distributions. For each combination of conditions, the 

simulation conducted 10,000 repetitions of the Mann-Whitney test and the permutation test for 

means, which had 10,000 iterations. We conducted three repetitions of this simulation.  The points 

on the plots indicate the mean powers from these three repetitions. In the legend below, “P” refers 

to permutation test, “MW” refers to Mann-Whitney test, and the numbers refer to the standard 

deviation of the second distribution (the standard deviation of the first distribution is always 1). 



(3) Results: 

 

Table 1. Permutation and Mann-Whitney test powers. For each combination of conditions, the 

simulation conducted 10,000 repetitions of the Mann-Whitney test and the permutation test for means, 

which had 10,000 iterations. We conducted three repetitions of this simulation. If the Mann-Whitney test 
outperformed the permutation test, the row is highlighted in grey. 

1 1 1 1 10 10 0.6244 0.6235 0.6331 0.7117 0.7080 0.7130 -0.0839

2 2 1 1 10 10 0.5665 0.5691 0.5696 0.5335 0.5320 0.5320 0.0359

3 3 1 1 10 10 0.5571 0.5578 0.5524 0.5005 0.5012 0.4976 0.0560

4 1 1 2 10 10 0.2750 0.2733 0.2738 0.2216 0.2191 0.2187 0.0542

5 2 1 2 10 10 0.2507 0.2525 0.2535 0.1885 0.1920 0.1900 0.0621

6 3 1 2 10 10 0.2662 0.2649 0.2641 0.2190 0.2237 0.2219 0.0435

7 1 1 4 10 10 0.0803 0.0799 0.0831 0.0703 0.0678 0.0685 0.0122

8 2 1 4 10 10 0.1031 0.1026 0.1041 0.0887 0.0843 0.0861 0.0169

9 3 1 4 10 10 0.1205 0.1221 0.1228 0.1082 0.1153 0.1120 0.0100

10 1 1.5 1 10 10 0.8716 0.8760 0.8810 0.9102 0.9154 0.9151 -0.0374

11 2 1.5 1 10 10 0.8866 0.8860 0.8875 0.8627 0.8572 0.8612 0.0263

12 3 1.5 1 10 10 0.8851 0.8862 0.8881 0.8463 0.8494 0.8443 0.0398

13 1 1.5 2 10 10 0.6226 0.6374 0.6236 0.6566 0.6644 0.6639 -0.0338

14 2 1.5 2 10 10 0.5264 0.5365 0.5215 0.4241 0.4337 0.4180 0.1029

15 3 1.5 2 10 10 0.5231 0.5243 0.5189 0.4435 0.4438 0.4432 0.0786

16 1 1.5 4 10 10 0.1529 0.1490 0.1535 0.0828 0.0774 0.0867 0.0695

17 2 1.5 4 10 10 0.1740 0.1682 0.1793 0.1318 0.1317 0.1348 0.0411

18 3 1.5 4 10 10 0.2086 0.1949 0.1991 0.1866 0.1788 0.1765 0.0202

19 1 2 1 10 10 0.9687 0.9712 0.9650 0.9777 0.9788 0.9762 -0.0093

20 2 2 1 10 10 0.9878 0.9879 0.9870 0.9788 0.9788 0.9791 0.0087

21 3 2 1 10 10 0.9891 0.9883 0.9900 0.9785 0.9800 0.9788 0.0100

22 1 2 2 10 10 0.8708 0.8759 0.8697 0.9035 0.9059 0.9073 -0.0334

23 2 2 2 10 10 0.8002 0.7975 0.8022 0.7153 0.7091 0.7136 0.0873

24 3 2 2 10 10 0.7663 0.7650 0.7661 0.6830 0.6796 0.6810 0.0846

25 1 2 4 10 10 0.2978 0.2975 0.2965 0.1562 0.1557 0.1535 0.1421

26 2 2 4 10 10 0.2891 0.2928 0.2948 0.2139 0.2152 0.2176 0.0767

27 3 2 4 10 10 0.3143 0.3081 0.3004 0.2690 0.2604 0.2586 0.0449

28 1 1 1 10 30 0.7874 0.7854 0.7872 0.8632 0.8627 0.8677 -0.0779

29 2 1 1 10 30 0.7648 0.7698 0.7759 0.7375 0.7431 0.7452 0.0282

30 3 1 1 10 30 0.7646 0.7543 0.7620 0.7209 0.7112 0.7207 0.0427

31 1 1 2 10 30 0.2429 0.2457 0.2604 0.3000 0.3002 0.3167 -0.0560

32 2 1 2 10 30 0.2419 0.2358 0.2430 0.2556 0.2469 0.2581 -0.0133

33 3 1 2 10 30 0.2548 0.2485 0.2431 0.3089 0.3040 0.3072 -0.0579

34 1 1 4 10 30 0.0069 0.0070 0.0060 0.0184 0.0166 0.0158 -0.0103

35 2 1 4 10 30 0.0222 0.0194 0.0199 0.0415 0.0386 0.0404 -0.0197

36 3 1 4 10 30 0.0255 0.0288 0.0268 0.0650 0.0734 0.0687 -0.0420

37 1 1.5 1 10 30 0.9623 0.9630 0.9603 0.9768 0.9749 0.9741 -0.0134

38 2 1.5 1 10 30 0.9764 0.9764 0.9754 0.9623 0.9605 0.9613 0.0147

39 3 1.5 1 10 30 0.9786 0.9811 0.9778 0.9675 0.9676 0.9677 0.0116

40 1 1.5 2 10 30 0.7291 0.7157 0.7202 0.8538 0.8493 0.8500 -0.1294

41 2 1.5 2 10 30 0.7210 0.7224 0.7149 0.8534 0.8491 0.8457 -0.1300

42 3 1.5 2 10 30 0.6542 0.6530 0.6403 0.6485 0.6526 0.6360 0.0035

43 1 1.5 4 10 30 0.6239 0.6396 0.6417 0.6623 0.6778 0.6757 -0.0369

44 2 1.5 4 10 30 0.0496 0.0477 0.0495 0.0358 0.0363 0.0359 0.0129

45 3 1.5 4 10 30 0.0934 0.0917 0.0975 0.1772 0.1718 0.1720 -0.0795

46 1 2 1 10 30 0.9942 0.9948 0.9946 0.9961 0.9951 0.9948 -0.0008

47 2 2 1 10 30 0.9996 0.9993 0.9994 0.9983 0.9978 0.9987 0.0012

48 3 2 1 10 30 0.9999 0.9996 0.9998 0.9994 0.9989 0.9991 0.0006

49 1 2 2 10 30 0.9445 0.9431 0.9453 0.9781 0.9796 0.9775 -0.0341

50 2 2 2 10 30 0.9297 0.9299 0.9266 0.9228 0.9226 0.9210 0.0066

51 3 2 2 10 30 0.9114 0.9137 0.9138 0.9144 0.9185 0.9203 -0.0048

52 1 2 4 10 30 0.2088 0.2066 0.2062 0.1618 0.1603 0.1621 0.0458

53 2 2 4 10 30 0.2164 0.2194 0.2115 0.2505 0.2480 0.2407 -0.0306

54 3 2 4 10 30 0.2272 0.2366 0.2306 0.3389 0.3424 0.3324 -0.1064

55 1 1 1 30 30 0.9622 0.9558 0.9606 0.9950 0.9944 0.9950 -0.0353

56 2 1 1 30 30 0.9649 0.9663 0.9665 0.9630 0.9629 0.9648 0.0023

57 3 1 1 30 30 0.9691 0.9699 0.9699 0.9587 0.9584 0.9564 0.0118

58 1 1 2 30 30 0.7272 0.7288 0.7350 0.6158 0.6180 0.6197 0.1125

59 2 1 2 30 30 0.6880 0.6813 0.6862 0.5222 0.5105 0.5269 0.1653

60 3 1 2 30 30 0.6783 0.6662 0.6683 0.5903 0.5887 0.5885 0.0818

61 1 1 4 30 30 0.2101 0.2105 0.2152 0.0783 0.0824 0.0870 0.1294

62 2 1 4 30 30 0.2372 0.2440 0.2364 0.1368 0.1370 0.1344 0.1031

63 3 1 4 30 30 0.2598 0.2454 0.2574 0.2269 0.2167 0.2240 0.0317

64 1 1.5 1 30 30 0.9995 0.9993 0.9988 1.0000 0.9999 1.0000 -0.0008

65 2 1.5 1 30 30 0.9999 0.9999 1.0000 0.9999 0.9997 0.9999 0.0001

66 3 1.5 1 30 30 1.0000 1.0000 1.0000 0.9999 0.9996 1.0000 0.0002

67 1 1.5 2 30 30 0.9812 0.9806 0.9820 0.9926 0.9925 0.9937 -0.0117

68 2 1.5 2 30 30 0.9632 0.9636 0.9651 0.9007 0.8961 0.9038 0.0638

69 3 1.5 2 30 30 0.9553 0.9533 0.9542 0.9131 0.9130 0.9121 0.0415

70 1 1.5 4 30 30 0.5234 0.5279 0.5355 0.1246 0.1282 0.1318 0.4007

71 2 1.5 4 30 30 0.4951 0.5073 0.4962 0.2900 0.3001 0.2973 0.2037

72 3 1.5 4 30 30 0.5143 0.5094 0.5076 0.4290 0.4219 0.4250 0.0851

73 1 2 1 30 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

74 2 2 1 30 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

75 3 2 1 30 30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

76 1 2 2 30 30 0.9994 0.9994 0.9997 1.0000 1.0000 1.0000 -0.0005

77 2 2 2 30 30 0.9995 0.9995 0.9997 0.9964 0.9971 0.9965 0.0029

78 3 2 2 30 30 0.9985 0.9980 0.9986 0.9936 0.9931 0.9936 0.0049

79 1 2 4 30 30 0.8482 0.8406 0.8451 0.3981 0.3873 0.3836 0.4550

80 2 2 4 30 30 0.7669 0.7643 0.7677 0.5320 0.5268 0.5216 0.2395

81 3 2 4 30 30 0.7488 0.7526 0.7539 0.6339 0.6423 0.6500 0.1097
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