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Abstract 
 In this project, we use logistic regression, combined with AIC and BIC criteria, to find an 
optimal model in R for predicting the outcome of a professional tennis match. The data for this 
analysis comes from the Men’s 2014 Grand Slam tournaments, which are combined into one 
data set, randomized, and broken into training and validation sets. The optimal model, using 
information from both players, under the BIC criterion using variables concerning both players 
accurately predicts 93.2% of the cases in the training set and 93.4% of the cases in our 
validation set using a 50% probability as a cutoff for win or loss for player one. 
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Introduction 
The Grand Slam tournaments consist of the four most important tennis events for any 

tennis player. Even people who are not avid tennis fans may still recognize recurring 
competitors such as Nadal, Djokavic, or Sharapova. The top players across the world come to 
play for ranking, notoriety, fame, and prize money. Each of the four tournaments, the Australian 
Open, French Open, US Open, and Wimbledon, bring hundreds of thousands of fans eager to 
watch the best tennis players fight to be on top. Because the competition in this tournament is 
often fierce, and players’ performances are often based on many factors, we would like to know 
which specific variables are most important in determining the outcome of a match. 

This research question is incredibly relevant in the world of sports. Coaches, players, 
and fans would want to know the factors most important to winning matches. Thousands of 
dollars are bet on matches by zealous fans. Creating a model to determine likely predictors of 
success could allow players to target their training to focus on the aspects deemed most critical 
to success. In terms of the both players model this would give an overall, more general 
prediction depending on the performance of both players, while a single player model would 
deal only with an individual player, which the player has more control over.  

After some attempts at creating predictive logistic regression models for the outcome of 
a match, it became clear that the data in the Australian Open would not be enough for fitting a 
model. Due to the large number of predictors and fairly small number of observations (126), it 
was possible to fit a perfect model. As a result, although the model could predict all results in 
the Australian Open correctly, it could not be used for any other data set. Thus, it became 
necessary to combine data sets in order to train the model with more observations. We combine 
the Men’s Australian Open, French Open, US Open, and Wimbledon into one data set with 491 
observations initially. The data was randomized and 365 observations were used to train a 
model while the remaining 126 for validation. 

It is possible that some tennis matches in the different tournaments involve the same two 
players. However, the conditions for playing in each tournament are not identical. For instance, 
changes in weather, surface played on, preparation taken by the players for that particular 
tournament, and additional practice in between tournaments all mean that two players facing 
each other in a second match are not playing the same game as before. Therefore, we consider 
such repeated cases with the same two players in a match to be independent and we keep 
them in the data set. 
 
Trimming 

In trimming the data, we decide to exclude numerous variables in the data analysis 
process. The original data set contains 42 variables but many of these are not meaningful. We 
remove identifier variables pertaining to the players and rounds in addition to variables with 
many missing values and variables that would clearly be very highly or perfectly correlated with 
a victory (such as matches or sets won) without any quantitative measurements. 

Finally, we consider the potential issue of multicollinearity. As a cutoff, we consider any 
two variables with a correlation coefficient greater than or equal to 0.85 to be “highly correlated.” 
As a result, we remove multiple variables, which are described in greater detail in the Appendix. 
We also check to see if multicollinearity is an issue after fitting our models. 
 
Modeling 
 The first question we ask, given our trimmed data, is: What is the optimal model for 
predicting the outcome of a match, given the performance of both players? 
 We know that a logistic regression model is appropriate since our response variable, 
“Result,” is binary. Thus, we first consider a full model (using all 14 available predictors in the 
trimmed data set across both players) and use a stepwise procedure to find a potentially “best” 
model. In order to consider a couple candidates, we use both the BIC and AIC criteria for the 
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stepwise procedure. Additionally, when fitting the models, we randomly assign 365 of the 486 
observations in the trimmed data set to train the model while the remaining 121 observations 
are used to validate that model. We consider the accuracy of each model on both the training 
and validation sets later. 
 After running the stepwise procedure, we find that our best model under the BIC criterion 
is: 

log (
�̂�

1 − �̂�
) = 0.9091 + 0.2195 𝐹𝑆𝑊. 1 + 0.1865 𝑆𝑆𝑊. 1 + 0.3421 𝐵𝑃𝐶. 1 + 0.2691 𝐵𝑃𝑊. 1

− 0.2362 𝐹𝑆𝑊. 2 − 0.1873 𝑆𝑆𝑊. 2 − 0.3521 𝐵𝑃𝐶. 2 − 0.2870 𝐵𝑃𝑊. 2 

where �̂� indicates the predicted probability of player one winning the entire match, FSW refers 
to first serves won, SSW to second serves won, BPC to break points created, BPW to break 
points won, and the “1” or “2” appended at the end of each variable refers to whether player one 
or two made that action. It is interesting that, according to the coefficients of each variable, a 
change in break points created for either player would have the largest impact on the probability 
of player one winning the match when compared to the other variables, including break points 
won, given that all the other variables in the model remain constant. We also note that all those 
variables for which a unit increase would be intuitively better for player one, do in fact have 
positive coefficients while the opposite is true for those variables applying to player two. This is 

fitting given that we had defined that �̂� indicates the predicted probability of player one winning. 
 We can check for potential issues with our logistic model using plot diagnostics (please 
refer to Figure 1 in the Appendix). It is clear from these plots that case 53 stands out as a 
possibly influential point. However, this case’s Cook Distance is well below the 50th percentile 
for its appropriate F distribution, according to the fourth plot of residuals vs. leverage. Therefore, 
although case 53 has a large residual based on the predictive model, we will not consider it an 
influential point. We can say similarly for case 96 which also appear to be potentially (but not 
truly) influential points. We can bear these cases in mind as we continue with our analysis but 
we will not remove them from the data set. 
 To check for any potential issue of multicollinearity in this model, we use the variance 
inflation factor (VIF) from the package “car.” Using this function, we find that the VIF values for 
the regressors are considerably below the cutoff of 10 that usually indicates serious 
multicollinearity: 
 

FSW.1 SSW.1 BPC.1 BPW.1 FSW.2 SSW.2 BPC.2 BPW.2 

7.8525 2.6602 2.1012 2.3324 8.9699 2.3972 2.1631 2.2852 

 
Thus, we do not have multicollinearity in this model. 
 When we consider the accuracy of our model, we find that the BPC.1 and BPC.2 model 
accurately predicts 93.2% of the cases in our original data set and 93.4% of the cases in our 
validation data set using a 50% probability as a cutoff for Result. Most of the probabilities of a 
win or loss obtained through predictions are very close to either 0 or 1. Thus, using cutoffs that 
are moderately different from 50% (such as 40% and 60% or even 30% and 70%) do not make 
much of a difference, if any, in the accuracy of this model. This is also true for other models to 
come. 

We now want to consider our model under the AIC criterion in the stepwise procedure. 
We find that our best model under this condition is slightly more complicated than that under the 
BIC criterion: 

log (
�̂�

1 − �̂�
) = 6.6438 + 0.1054 𝐹𝑆𝑃. 1 + 0.2343 𝐹𝑆𝑊. 1 + 0.2972 𝑆𝑆𝑊. 1 −  0.1565 𝐷𝐵𝐹. 1

+ 0.3349 𝐵𝑃𝐶. 1 + 0.2840 𝐵𝑃𝑊. 1 − 0.1809 𝐹𝑆𝑃. 2 − 0.2310 𝐹𝑆𝑊. 2
− 0.3494 𝑆𝑆𝑊. 2 − 0.3836 𝐵𝑃𝐶. 2 − 0.3089 𝐵𝑃𝑊. 2 
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Our model now additionally includes DBF.1 and DBF.2 (double faults by each player), BPW.1 
(break points won by player one), and FSP.1 and FSP.2 (first serve percentage by each player). 
We could interpret our coefficients similarly to as we did previously with the BIC model.  
 We again check for model diagnostics using plots (please refer to Figure 2 in the 
Appendix). We obtain plots very similar to those we obtained earlier. Again, cases 53 and 195 
stand out as potentially influential points but both have Cook’s Distances falling well below the 
50th percentile of the appropriate F distribution, indicating that these observations are not 
influential. In this case we other potentially influential observations – cases 5 and 79 - but they 
are even less severe than cases 53 and 195. Thus, we can again bear these cases in mind 
when continuing with analysis but we will not adjust for them. 
 Checking for multicollinearity with the variance inflation factor (VIF), we find that the VIF 
values are: 

FSP.1 FSW.1 SSW.1 DBF.1 BPC.1 BPW.1 

4.2255 10.6242 7.4091 1.3838 2.025 2.3314 

 

FSP.2 FSW.2 SSW.2 BPC.2 BPW.2 

4.1828 10.9715 6.2887 2.0852 2.4272 

 
We note that the VIF values for FSW.1 and FSW.2 both exceed 10 which indicates that this 
model may be subject to multicollinearity in addition to being more complicated than the BIC 
model given. 
 When considering the accuracy of this AIC model, we find that it accurately predicts 
94.8% of the cases in our original data set, making it very slightly more accurate in these terms 
than our BIC model, but only 89.3% of the cases in our validation set. Thus, although the AIC 
model is a slightly more accurate for our training data set, it is worse for the validation set. 
Additionally, this AIC model is much more complicated than the BIC model we obtained earlier 
which involved fewer predictors. Based on these conditions, we would choose the BIC model as 
the better predictive model of the two, for the sake of modestly easier interpretation and 
accurate prediction. 
 

Conclusion 
 It seems that the BIC model: 

log (
�̂�

1 − �̂�
) = 0.9091 + 0.2195 𝐹𝑆𝑊. 1 + 0.1865 𝑆𝑆𝑊. 1 + 0.3421 𝐵𝑃𝐶. 1 + 0.2691 𝐵𝑃𝑊. 1

− 0.2362 𝐹𝑆𝑊. 2 − 0.1873 𝑆𝑆𝑊. 2 − 0.3521 𝐵𝑃𝐶. 2 − 0.2870 𝐵𝑃𝑊. 2 
is the most accurate among those models considered, even though it has only two predictors. 
This indicates that among the many different predictors initially included in the data set, break 
points created by each player are very useful predictors for determining who wins a match. 

We may also want to consider the possibilities for future research questions and models. 
For instance, instead of using data solely gathered from a match being played, we could collect 
data regarding different characteristics of each player, such as time spent practicing per day, 
the type of court that a player is used to playing on (grass, clay, synthetic materials), whether a 
player practices indoors or outdoors, and so on. It is very possible that such attributes make a 
difference in the outcome of matches. The only drawback to this would be that the data required 
to run these analyses may not be readily available to us or may depend on interviews and 
player comments rather than actual data. Overall, there are many interesting possible 
extensions and questions that looking into this data set brings up that can be answered with 
further data collection and research. 
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Appendix 
 
Trimming 

In trimming the data, we decide to exclude numerous variables in the data analysis 
process. The original data set contains 42 variables but many of these are not meaningful. We 
remove the names of the players in a match and the round in which they play because these 
variables are not pertinent to predicting victory. Similarly, we decide to take out ST1.1, ST2.1, 
ST3.1, ST4.1, ST5.1, ST1.2, ST2.2, ST3.2, ST4.2 and ST5.2 (individual set results), TPW.1 and 
TPW.2 (total points won), and FNL.1 and FNL.2 (final number of games won). The set total 
variables are left out because by definition, the more sets a player wins, the more likely he will 
win the match. So, these are not meaningful variables to predict a player’s chance of winning. 
The same is true of total points won and the final number of games won. 

We exclude other variables due to a large number of missing values: NPA.1 and NPA.2 
(net points attempted), NPW.1 and NPW.2 (net points won), WNR.1 and WNR.2 (winners 
earned), and UFE.1 and UFE.2 (unforced errors). 

Finally, we consider the potential issue of multicollinearity. As a cutoff, we consider any 
two variables with a correlation coefficient greater than or equal to 0.85 to be “highly correlated.” 
As a result, we remove SSP.1 and SSP.2 (second serve percentage) because these are equal 
to 1 - FSP.1 and 1 - FSP.2 (first serve percentage) respectively. We can also check to see if 
multicollinearity is an issue after fitting our models. 

 
 

 
Figure 1 
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Figure 2 
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