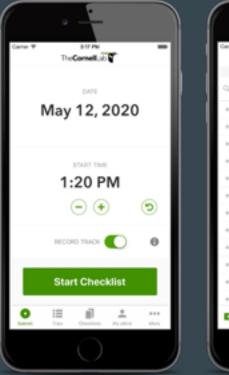
Spatial Modeling Of Bird Populations Using Citizen Science Data

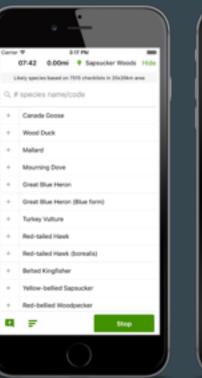
> Veronica Lee Dr. Andrey Skripnikov New College of Florida

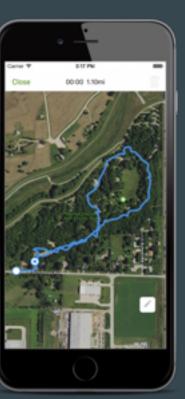




### Data Source: eBird







| ÷                                                                               | 12 Mar 12:29PM                                            | × |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|---|--|--|--|
| Choose a location                                                               |                                                           |   |  |  |  |
| Incidental -                                                                    |                                                           |   |  |  |  |
| Obser                                                                           | vers                                                      |   |  |  |  |
| 1                                                                               | 1                                                         |   |  |  |  |
| Are you submitting a complete checklist of the birds you were able to identify? |                                                           |   |  |  |  |
|                                                                                 | Yes No                                                    |   |  |  |  |
| Comr                                                                            | nents                                                     |   |  |  |  |
| 5 Sp                                                                            | ß                                                         |   |  |  |  |
| Please review the following observations                                        |                                                           |   |  |  |  |
| 1                                                                               | American Flamingo   Rare observation: please add comments |   |  |  |  |
| 1001                                                                            | White Ibis<br>High count: please add comments             | • |  |  |  |
| 1                                                                               | Turkey Vulture                                            |   |  |  |  |
| 2                                                                               | Osprey                                                    |   |  |  |  |
| 1                                                                               | Red-bellied Woodpecker                                    |   |  |  |  |
|                                                                                 |                                                           | _ |  |  |  |

Continue

#### **Research Motivation**

- Use data from eBird to model bird populations
- Interested in building on previous
   Cornell Lab research
- Modeling relative abundance
- Address potential spatial dependence



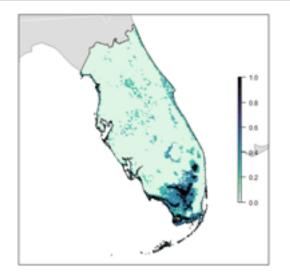
## **Covariates of Interest**

#### Environmental covariates:

- Mean elevation
- Standard deviation of elevation
- Percentage of land cover type
  - Fifteen total types

Checklist covariates:

- Time checklist started
- Duration
- Distance traveled
- Number of observers





#### Previous Work: Johnston et al.

Contributions:

- Filter for complete checklists only and other filters to impose structure
- Addition of checklist covariates in model
- Negative binomial and zero-inflated Poisson distributions for relative abundance
- Use of generalized additive model (GAM) techniques to represent nonlinear relationships

### Previous Work: Johnston et al.

Contributions:

- Filter for complete checklists only and other filters to impose structure
- Addition of checklist covariates in model
- Negative binomial and zero-inflated Poisson distributions for relative abundance
- Use of generalized additive model (GAM) techniques to represent nonlinear relationships

Limitations:

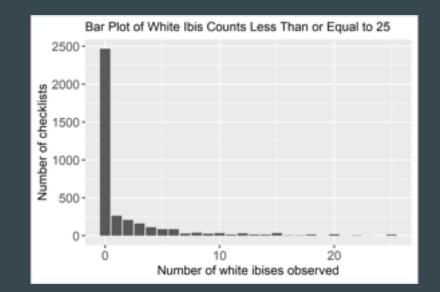
- Does not assess if GAMs are preferable to the simpler GLMs
- Independence of observations is assumed

#### Previous Work: Lee et al.

- Quasi-Poisson hierarchical generalized linear model (HGLM) with spatially correlated random effects
- Lee et al. used the model type for counts from species observations with excess zeros

## Data Preparation

- Selected ten species
- Data filters
- Removing non-informative covariates
- Multicollinearity analysis
- Influential data analysis
- Exploratory data analysis



#### Modeling with GLM and GAM

- Three main distributions were used: quasi-Poisson, negative binomial, and zeroinflated Poisson
- For each of the distributions, fit one GLM and one GAM
- Used June 2016 for training data and June 2017 for test data
- Metric for comparison: mean absolute deviation

### Modeling with GLM and GAM

- Three main distributions were used: quasi-Poisson, negative binomial, and zeroinflated Poisson
- For each of the distributions, fit one GLM and one GAM
- Used June 2016 for training data and June 2017 for test data
- Metric for comparison: mean absolute deviation

Results:

- Selected quasi-Poisson
- Selected GAM over GLM

#### Modeling with HGAM

- Fit quasi-Poisson HGAM with spatial random effects
- Conditional autoregressive (CAR) ρ-hat values for spatial correlation in the data

| CAR $\hat{\rho}$ Values |                  |  |  |  |
|-------------------------|------------------|--|--|--|
| Species                 | CAR $\hat{\rho}$ |  |  |  |
| White Ibis              | 0.199            |  |  |  |
| Glossy Ibis             | 0.204            |  |  |  |
| Great Egret             | 0.198            |  |  |  |
| Cattle Egret            | 0.174            |  |  |  |
| Snowy Egret             | 0.192            |  |  |  |
| Great Blue Heron        | 0.214            |  |  |  |
| Little Blue Heron       | 0.184            |  |  |  |
| Green Heron             | 0.196            |  |  |  |

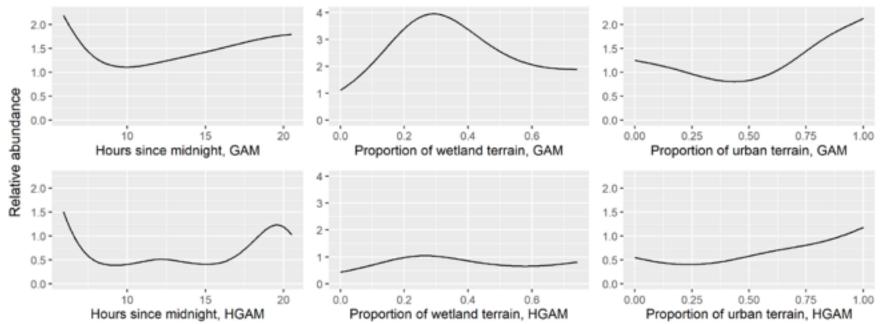
Table 3: The CAR  $\hat{\rho}$  values for each quasi-Poisson HGAM fit.

#### **Results: Predictive Performance**

| MAD Values and Percent Change |               |               |         |  |  |
|-------------------------------|---------------|---------------|---------|--|--|
|                               | Quasi-Poisson | Quasi-Poisson | Percent |  |  |
|                               | GAM           | HGAM          | Change  |  |  |
| White Ibis                    | 3.904         | 2.790         | -28.536 |  |  |
| Glossy Ibis                   | 0.996         | 0.518         | -47.987 |  |  |
| Great Egret                   | 1.348         | 1.061         | -21.308 |  |  |
| Cattle Egret                  | 2.556         | 1.632         | -36.144 |  |  |
| Snowy Egret                   | 1.439         | 0.958         | -33.391 |  |  |
| Great Blue Heron              | 0.575         | 0.424         | -26.191 |  |  |
| Little Blue Heron             | 0.786         | 0.557         | -29.141 |  |  |
| Green Heron                   | 0.431         | 0.307         | -28.889 |  |  |

Table 4: MAD values by model type; Percent change when switching from GAM to HGAM.

#### **Results: Effect Displays**



#### Effect of Selected Covariates on White Ibis Relative Abundance

#### **Results: Prediction Plots**

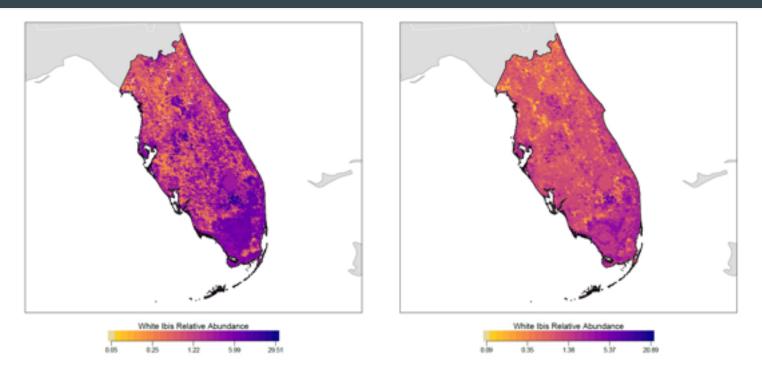
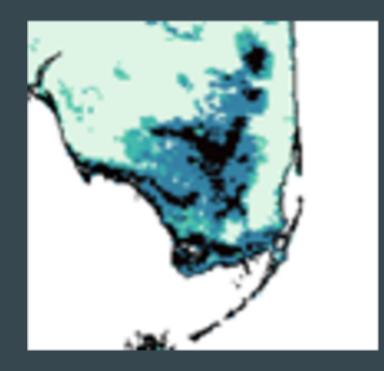
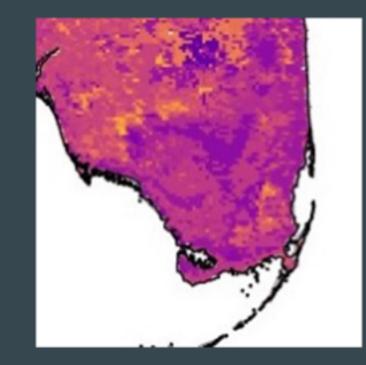


Figure 3: Left: Prediction plot map for quasi-Poisson GAM. Right: Prediction plot map for quasi-Poisson HGAM. The scale for relative abundance changes slightly between maps.

#### **Results: Prediction Plots**





### Conclusion

- Quasi-Poisson HGAM with spatial effects preferred
  - Stronger at predicting counts
  - More realistic regarding the impact of environmental covariates on relative abundance.

Limitations:

- Removal of X-count observations
- No method available for measuring statistical significance of spatial dependence



# Thank you for listening!



#### Sources

- Johnston, A., W. Hochachka, M. Strimas-Mackey, V. Ruiz-Gutierrez, O. Robinson, E. Miller, T. Auer, S. Kelling, and D. Fink (2020a). Analytical guidelines to increase the value of citizen science data: using eBird data to estimate species occurrence. *Diversity and Distributions*, 1265–1277.
- Johnston, A., W. Hochachka, M. Strimas-Mackey, V. Ruiz-Gutierrez, O. Robinson,
   E. Miller, T. Auer, S. Kelling, and D. Fink (2020b). *Best Practices for Using eBird Data* (1 ed.). Cornell Lab of Ornithology.
- Lee, Y., M. M. Alam, M. Noh, L. Rönnegård, and A. Skarin (2016). Spatial modeling of data with excessive zeros applied to reindeer pellet-group counts. *Ecology and evolution 6* (19), 7047–7056.
- Photo on Slide 3 is from <u>https://ebird.org/about/ebird-mobile/</u>.