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Research Motivation

- Use data from eBird to model bird
populations

- Interested in building on previous
Cornell Lab research

- Modeling relative abundance

- Address potential spatial dependence , \



Covariates of Interest

Environmental covariates:

- Mean elevation

- Standard deviation of elevation

- Percentage of land cover type

- Fifteen total types

Checklist covariates:

- Time checklist started

- Duration

_ Distance traveled Figure 4: The proportion of wetland land cover across BCR 31 in 2016

- Number of observers



Previous Work: Johnston et al.

Contributions:

\

Filter for complete checklists only and other filters to impose structure

Addition of checklist covariates in model

\

\

Negative binomial and zero-inflated Poisson distributions for relative abundance

\

Use of generalized additive model (GAM) techniques to represent nonlinear
relationships



Previous Work: Johnston et al.

Contributions:
- Filter for complete checklists only and other filters to impose structure
- Addition of checklist covariates in model
- Negative binomial and zero-inflated Poisson distributions for relative abundance

- Use of generalized additive model (GAM) techniques to represent nonlinear
relationships

Limitations:
- Does not assess if GAMs are preferable to the simpler GLMs

- Independence of observations is assumed



Previous Work: Lee et al.

- Quasi-Poisson hierarchical generalized linear model (HGLM) with spatially
correlated random effects

- Lee et al. used the model type for counts from species observations with excess

Z€eros



Data Preparation

Bar Plot of White Ibis Counts Less Than or Equal to 25
2500-

- Selected ten species

2000~

- Data filters

1500~

- Removing non-informative
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- Multicollinearity analysis

- Influential data analysis

Number of white ibises observed

- Exploratory data analysis



Modeling with GLM and GAM

- Three main distributions were used: quasi-Poisson, negative binomial, and zero-
inflated Poisson

- For each of the distributions, fit one GLM and one GAM
- Used June 2016 for training data and June 2017 for test data

- Metric for comparison: mean absolute deviation



Modeling with GLM and GAM

- Three main distributions were used: quasi-Poisson, negative binomial, and zero-
inflated Poisson

- For each of the distributions, fit one GLM and one GAM
- Used June 2016 for training data and June 2017 for test data
- Metric for comparison: mean absolute deviation

Results:

- Selected quasi-Poisson

- Selected GAM over GLM



Modeling with HGAM

- Fit quasi-Poisson HGAM with spatial random effects

- Conditional autoregressive (CAR) p-hat values for spatial correlation in the data

CAR p Values
Speces
White Ibis m
Glossy Ibis m
| Great Egret 0.198
| Cattle Egret 0.174

Snowy Egret m
Great Blue Heron m
Little Blue Heron
Green Heron m

Table 3: The CAR p values for each quasi-Poisson HGANM fit.




Results: Predictive Performance

MAD Values and Percent Change

Quasi-Poisson Quasi-Poisson Percent
GAM HGANMI Change
White Ibis 3.904 2.790 —28.536
Glossy Ibis 0.996 0.518 —47.987
Great Egret 1.348 1.061 —21.308
Cattle Egret 2.556 1.632 -36.144
Snowy Egret 1.439 0.958 —33.391
Great Blue Heron 0.575 0.424 -26.191
Little Blue Heron 0.786 0.557 -29.141
Green Heron 0.431 0.307 —28.889

Table 4: MAD values by model type: Percent change when switching from GAM to HGANMIL.




Results: Effect Displays

Effect of Selected Covariates on White Ibis Relative Abundance
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Results: Prediction Plots

VWhite itis Melatve Abundance VWhite b Relatwe Abundance
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Figure 3: Left: Prediction plot map for quasi-Poisson GAM. Right: Prediction plot map for
quasi-Poisson HGAM. The scale for relative abundance changes slightly between maps.




Results: Prediction Plots




Conclusion

- Quasi-Poisson HGAM with spatial effects preferred
- Stronger at predicting counts

- More realistic regarding the impact of environmental covariates on relative
abundance.

Limitations:
- Removal of X-count observations

- No method available for measuring statistical significance of spatial dependence



"7 Thank you for listening!




Sources

- Johnston, A., W. Hochachka, M. Strimas-Mackey, V. Ruiz-Gutierrez, O. Robinson,
E. Miller, T. Auer, S. Kelling, and D. Fink (2020a). Analytical guidelines to
increase the value of citizen science data: using eBird data to estimate species
occurrence. Diversity and Distributions, 1265-1277.

- Johnston, A., W. Hochachka, M. Strimas-Mackey, V. Ruiz-Gutierrez, O. Robinson,
E. Miller, T. Auer, S. Kelling, and D. Fink (2020b). Best Practices for Using eBird
Data (1 ed.). Cornell Lab of Ornithology.

- Lee, Y., M. M. Alam, M. Noh, L. Rénnegard, and A. Skarin (2016). Spatial
modeling of data with excessive zeros applied to reindeer pellet-group counts.
Ecology and evolution 6 (19), 7047—7056.

- Photo on Slide 3 is from https://ebird.org/about/ebird-mobile/.
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