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Abstract 
 
Bayesian methodology continues to be widely used in statistical applications. As a result, it is 
increasingly important to introduce students to Bayesian thinking at early stages in their 
mathematics and statistics education. While many students in upper level probability courses can 
recite the differences in the Frequentist and Bayesian inferential paradigms, these students often 
struggle using Bayesian methods when conducting data analysis. Specifically, students tend to 
struggle translating subjective belief to the specification of a prior distribution and the 
incorporation of uncertainty in the Bayesian inferential approach. The purpose of this paper is to 
present a hands-on activity involving the Beta-Binomial model to facilitate an intuitive 
understanding of the Bayesian approach through subjective problem formulation which lies at 
the heart of Bayesian statistics.  
 
1.  Introduction 
   
Carlin and Louis (2000, p. 1) state that, “The Bayesian approach to statistical design and analysis 
is emerging as an increasingly effective and practical alternative to the frequentist one.” Given  
the increasing popularity of the Bayesian approach to address statistical problems, it is important 
to expose students to this perspective. In particular, Stangl (1998) provides a nice discussion of 
some of the issues and challenges for incorporating the Bayesian paradigm into Statistics 
courses. It is especially important to provide students with meaningful applications and tangible 
experiences with Bayesian statistics to aid in the learning process. For example, Jessop (2010) 
presents a simple classroom activity demonstrating Bayesian inference in an introductory 
statistics course. Albert (2000) utilizes a sample survey project in an introductory course to 
introduce statistical inference from a Bayesian perspective. There are numerous references like 
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these two that illustrate Bayesian inference using the well-known Bayes’ Theorem for events 
(Casella and Berger 2002, p. 23). However, Bayes’ Theorem does not address the generality of 
the Bayesian approach that is based upon prior and posterior probability distributions which 
incorporate uncertainty on the parameters (Robert 2001, p. 9). Though not as common, 
classroom activities have been proposed to illustrate this more general Bayesian approach. Albert 
and Rossman (2009, Ch. 17) provide a number of problems for studying proportions using 
continuous probability distributions. Their examples are designed for students in an introductory 
statistics course who are familiar with basic probability concepts. Kern (2006) describes an 
entertaining application of Bayesian inference using the game Pass the Pigs® to model 
multinomial probabilities with the Dirichlet probability distribution. This class activity is 
designed for undergraduates and graduates majoring in mathematics and statistics. DiPietro 
(2004) uses a psychological therapy project to engage students with advanced Bayesian 
methodology such as posterior simulation, sensitivity analysis, and Bayes factors. This project is 
designed for first-year graduates in an applied Bayesian methods class that is computationally 
intensive.  
 
In light of the competing paradigms to statistical inference, many statisticians have been asked, 
“Are you a Bayesian or Frequentist?” Definitive answers to this question have led to acrimonious 
debates. A Frequentist is thought of as one who would address a particular statistical inference 
problem from a perspective which treats the observations as random (from hypothetical 
replications) and the parameter of interest as an unknown, fixed constant. A Bayesian would 
address a particular statistical inference problem by regarding the experimental outcome as fixed 
and treating the parameter of interest as random (reflecting uncertainty in knowledge about the 
parameter). In this case, the parameter has a probability distribution before the data is collected 
(prior distribution) and a probability distribution after the data is collected (posterior 
distribution). Many students in upper division undergraduate or beginning graduate courses in 
statistics have some familiarity with the Frequentist versus Bayesian debate, but they generally 
have not been trained in Bayesian statistics. Their background in statistical methodology has 
been almost exclusively from a Frequentist perspective.  
 
In this manuscript, we propose an assignment to engage the students in the Bayesian paradigm 
which leads them away from the ‘yes’ or ‘no’ dichotomy of being a Bayesian. We consider the 
question: What is the probability you are a Bayesian? We will henceforth denote this question as 
‘Q.’ Since Q involves the concept of Bayesian statistics, it is necessary to consider what a 
Bayesian would do. Also, since Q is inherently subjective, it nicely facilitates the incorporation 
of a prior distribution. This question also recognizes that personal growth as a statistician is an 
ongoing process. What was posterior belief in an earlier experiment becomes prior belief in the 
next (Press 2003, p. 6). We pose Q to students in an upper-level statistical inference course (i.e., 
a mix of upper division undergraduate and first-year graduate students). Texts for such courses 
include Berry and Lindgren (1996), Bickel and Doksum (2001), Casella and Berger (2002), and 
Hogg, McKean, and Craig (2005). Students are expected to use a Bayesian approach to provide 
their personal answer to Q. Students are asked to provide a prior beta distribution to characterize 
their subjective belief about being a Bayesian. Next, each student is given a randomly selected 
inferential problem from a collection of problems appropriate to the particular class. For their 
problem, each student is expected to collect data and use that the data to conduct statistical 
inference utilizing either a Frequentist or Bayesian paradigm. The choice of either a Frequentist 
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or Bayesian approach for their randomly chosen problem is treated as a single observation from 
the Binomial (or Bernoulli) distribution with which they update their beta prior distribution on Q. 
The transition from prior to posterior distribution utilizes the Beta-Binomial model which is 
frequently the first model used in teaching Bayesian statistics. For convenience, Table 1 shows 
the complete assignment.  
 
Table 1. The assignment for the class exercise.  
 
 
Let ‘Q’ denote the following question: “What is the probability that you are a Bayesian?”  
You are to answer Q utilizing a Bayesian inferential approach. Please address the 
following in your write‐up. You have two weeks to complete this assignment. 
 

 
A. Prior Specification:  Let  Q  

denote the probability that you are a Bayesian. The first 

step in conducting inference on  Q  
is to assign a prior distribution. Assume 

 ~ Beta ,Q a b  where a and b are hyperparameters.   

 
1. Specify a particular Beta distribution that you feel most accurately describes your 
affinity towards being a Bayesian. Justify why you chose this particular Beta distribution. 
A well explained graph could be highly beneficial. 
 
2. Give the mean, variance, and quantiles (0.025, 0.25, 0.50, 0.75, 0.95) for your  
prior distribution.  
 

 
B. Experiment: Conduct an experiment to estimate the true proportion  ( )  of 

‘successes’ for your randomly selected problem from the collection of  N  proportion 

problems. Your experiment will consist of  n  independent trials where Y  denotes the 
number of trials which results in a success. 
 

1.  Obtain a single random number from 1,..., N . Give that number to the instructor to 

receive your randomly selected problem. Briefly describe the problem and any 
experience that you may have with your problem. 
 
2.  Carefully explain whether you used a Frequentist or Bayesian inferential approach for 
the problem in 1. Your discussion should involve the Bayesian characterizations (B1), 
(B2), (B3) or the Frequentist counterparts (F1), (F2), (F3). (These characterizations are 
given in Section 2.)  

 
3.  Briefly describe how you obtained the sample data for your problem. Be sure to 
report your sample size. What were your considerations in choosing the number of trials 
that you conducted? (This last question is required only for advanced classes.) 
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4.  Report the number of successes, point estimate, uncertainty of your point estimate, 
and the 95% interval estimate for  . Carefully interpret your interval estimate.  

 

 
C. Posterior Distribution: For your scenario, let  X  take the value 1 if a Bayesian 
approach was used in B and 0 if a Frequentist approach was used in B. Then 

   ~ Binomial 1,QX     where there is a single experimental trial based upon  X . 

The posterior distribution of  Q  
is obtained from your prior distribution in A and your 

observed value of  X  x  from B.  

 
1.  Give the posterior distribution based upon  x . What is the mean, variance, and 
quantiles (0.025, 0.25, 0.50, 0.75, 0.975) for your posterior distribution?  
 
2.  Provide a plot of your posterior distribution for  Q .  

 
3.  Describe what sort of change you observed between your prior and posterior 

distributions on  Q . In addition, calculate the absolute relative mean difference as  

|prior mean ‐ posterior mean|/(posterior std dev). 
 
4.  Give your answer to Q. Include in your answer a description of your posterior 

estimate and the posterior uncertainty of  Q . 

 
 
This manuscript consists of the following sections. Section 2 provides a description of student 
background in this upper-level course along with some of the issues we commonly encounter as 
students attempt to wrap their minds around the Bayesian inferential paradigm. Section 3 
describes the class instruction prior to giving the assignment where we characterize the 
population of problems and provides specific insights into the Bayesian approach for this 
assignment. Sections 4, 5, and 6 provide details about the sections of the assignment including 
the prior distribution, the experiment, and the posterior distribution, respectively. These types of 
details arise in office hours and class discussions as students are working through the 
assignment. Guidance will be given in each of these sections for grading the assignment along 
with common errors. Example student scenarios will be used in each of these sections to 
illustrate the results of this project. Section 7 contains concluding remarks, points for class 
discussion, as well as feedback about the success of this assignment.  
 
2.  Background 
 
Since the intended course for this exercise is an upper-level undergraduate course in statistical 
inference, students are expected to have a background in probability theory and integral calculus. 
It is common to initiate the discussion of Bayesian statistics in the context of point estimation 
once Frequentist approaches (method of moments, maximum likelihood) have been discussed. 
Prior to going through this exercise, students have been exposed to in-class derivations of exact 
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posterior distributions for the Beta-Binomial model and the Normal-Normal model. When 
writing the expression ‘Distribution1-Distribution2,’ students understand that ‘Distribution1’ 
denotes the prior distribution while ‘Distribution2’ denotes the distribution of the population 
from which the data is sampled. The Beta-Binomial and Normal-Normal models are typically 
used in course texts (e.g., Casella and Berger 2002, pp. 324-326) to introduce the Bayesian 
approach since they are conjugate families in which the posterior distribution is from the same 
family of distributions as the prior distribution. Students have also been taught that there are 
three main distinctions which characterize the Bayesian approach: 
 

(B1). The parameter of the population model is treated as a random variable. 
(B2). A prior distribution for the parameter is utilized.  
(B3). The inferential procedure is based upon the experimental outcome.    

 
These distinctions are in opposition to the Frequentist approach in which: (F1) The parameter is 
treated as a fixed unknown constant; (F2) A prior distribution is not utilized; (F3) The inferential 
procedure is based upon a collection of outcomes which could occur in hypothetical replications 
of the experiment. While students can generally recite such differences between the two 
inferential paradigms, they often struggle making the transition to the Bayesian perspective when 
actually conducting statistical inference. Many of them need more than discussion points (B1), 
(B2), (B3) and a couple of mechanistic examples. This is the motivation behind the proposed 
exercise to answer Q. Experimental information is incorporated according to whether or not the 
student adopts a Bayesian approach [(B1), (B2), (B3)] or a Frequentist approach [(F1), (F2), 
(F3)] in drawing inference for their randomly selected problem. 
 
This assignment can be organized in several ways, but for the purpose of this manuscript, we 
present the exercise as a single homework assignment which students have two weeks to 
complete. Students are permitted to ask questions or seek clarifications about the assignment 
from the instructor. Once the assignment is completed and assessed, a class session is spent 
discussing results, challenges encountered, and understandings gained from the assignment. 
Through this exercise, students personally experience a variety of important steps in the 
Bayesian decision making paradigm. These experiences include: (a) translating subjective belief 
to the specification of a prior distribution; (b) carrying out a Bayesian analysis with their own 
data; and (c) incorporating uncertainty in the Bayesian inferential approach.  
 
3.  Insights into the Bayesian Approach for this Problem 
 
When the assignment in Table 1 has been handed out, students may feel overwhelmed asking, 
“Now what am I going to do?” It can be reassuring and instructional for the students to take class 
time to put the assignment in perspective and to remind them of some of the basic tenants of 
Bayesian inference.  
 
We first consider a population of problems  P  from which Q should be answered. Thus, the 

answer to Q will be conditional on P. Let Q  denote the proportion of problems in P in which 

the student applies the Bayesian paradigm, or equivalently, the probability that the student is a 
Bayesian. Restrictions on P should include: 1. the student has the capability to carry out their 
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preferred paradigm for that problem and 2. the student is easily able to collect their own data for 
that problem. For our particular class, we further limit P  to consist of a large collection of 
proportion problems. Not only do we do this to satisfy our two requirements above, but we also 
like to have students work with the Beta-Binomial model for both their experiment and for 
obtaining their answer to Q. This approach allows them to see the similarities and differences 
between the inferential approach they choose and the Bayesian approach required to answer Q. A 
course instructor using this assignment would not have to use the same set of proportion 
problems, or to even use proportion problems to formulate P.   
 
This population P may be quite large or even infinite. In order to make the assignment feasible, 

we consider a set of N problems    which defines a sampling frame containing a representative 

collection of problems from P. For implementation of this assignment, our   consists of 
100N   proportion problems involving binary outcomes associated with: 1. tossing objects (i.e., 

coin, checker, tack), 2. binary survey questions (i.e., credit card holder, smoker, cell phone user), 
and 3. binary object identifications (i.e., car color, gender, parent). Thus, each problem in   has 
an associated storyline which varies in problem type, student familiarity with the problem, and 
the required sampling effort. These characteristics could affect whether a student thinks that a 
particular problem can best be analyzed from a Frequentist or Bayesian viewpoint. Thus, it is 
important to have a diverse collection of problems in   in order to have variability with respect 
to these characteristics. For example, a student might think that for a survey type problem, such 
as assessing the probability a university student owns a credit card, it is better to treat the 
probability as random (B1). A student who must assess the probability that a local resident has 
children might be more inclined to incorporate prior information (B2) if they provide child care. 
A student who must assess the probability of heads for a coin toss might be less inclined to 
condition on the experimental outcome (B3) when it is easy to obtain numerous outcomes. A 
large collection of proportion problems can be developed using Albert and Rossman (2009), 
Dunn (2005), and Albert (2000). 
 
Students are reminded that the probability Q  is represented as a random variable with 

realizations,  , which lie between 0 and 1. As such, there is uncertainty in Q . Students are also 

reminded that uncertainty in the knowledge about Q  is formally incorporated through a 

probability density function (PDF).  
 
Before conducting an experiment, we consider the prior PDF,    . The prior PDF for our 

model is obtained from the Beta distribution,  Beta ,Q a b   (see Appendix A.2.1). This is a 

convenient PDF for modeling probabilities since it has support over values from 0 to 1 and since 
it can have a variety of shapes according to the values of a and b (Albert and Rossman 2009, Ch. 
17). The prior PDF is  
 

    11 1
ba       .        (1) 
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Figure 1. Visual representation of sources of information about Q .  

 
 

Suitable values for a and b need to be chosen to reflect one’s belief about Q . Subjective 

knowledge about Q  can come from many sources. Four possible sources are depicted in Figure 

1 including background from past course instruction in Bayesian statistics, previous experience 
applying Bayesian methods, preference (popularity) for the Bayesian paradigm, and the ability or 
perceived ease of carrying out a Bayesian analysis. These four sources provide information about 
reasonable values for Q . These sources also provide uncertainty about Q  since it is not known 

how each one of them will impact the choice of paradigm when faced with a particular problem 
from the population P.  
 
As shown in Figure 1, knowledge about Q  also comes from the current behavior observed in an 

experiment. The experiment consists of the number of Bayesian inferential approaches 
(successes), X , adopted out of n inferential problems (trials). Thus, the experiment is modeled 
by the Binomial distribution,  Binomial ,X n   (see Appendix A.1.1). The knowledge from 

the experiment is incorporated through the likelihood function which conveys information about 
likely values of Q  as well as the uncertainty associated with the observed experimental result. 

The likelihood function is given by 
 

   1
n xxL x      .                 (2) 

 
While our development utilizes the Beta-Binomial model, it is important to remind students that 
their experiment represents only a single randomly chosen inferential problem, i.e. 1n  .  
 
Plausible values for Q  are reflected through both prior knowledge and the experimental result.  

The information about Q  from the prior PDF in (1) and the likelihood function in (2) are 

combined via the posterior PDF,  x  . The posterior PDF is defined as (Casella and Berger 

2002, p 324-325) 
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where the constant  ,B x a n x b    is the Beta function (see A.2.1). We also see from (4) that 

the posterior PDF has the Beta distribution,  Beta ,x x a b n x     . Thus, the class of Beta 

distributions is a conjugate family for the class of Binomial distributions since the resulting 
posterior distribution also has a Beta distribution with updated parameter values.  
 
For many students, the overview given above is illuminating in that they now see that the 
formula in (3) which they have been learning can incorporate both information and uncertainty 
from the prior distribution and the likelihood. At this point, students are generally able to think 
about the remaining challenges in the assignment. More specifically: 1. How do I specify my 
prior PDF? 2. How do I incorporate and interpret the uncertainty in the prior and posterior PDFs? 
3. How do I describe the Bayesian or Frequentist approaches to inference when I conduct 
inference for the randomly chosen experiment?  
 
In order to give an idea of “typical student work” in this manuscript, we introduce three 
hypothetical students. These students represent three common combinations of the descriptions 
shown in Figure 1 based upon previous implementations of the assignment. Freddy Frequentist 
only has background and experience with Frequentist based statistics and has little preference for 
the Bayesian approach. Betty Bayesian has had positive experiences with the Bayesian approach 
in previous courses and with research projects which has influenced her preference for this 
paradigm and given her the ability to carry it out. Naive Ned has limited background and 
experience with both approaches and has no obvious preference for either paradigm. Thus, it is 
natural to expect these types of students to differ in their answers to Q.  
 
4.  Formulation of Prior Distributions 
 
Section A (questions A.1-A.2) of the assignment in Table 1 requires students to incorporate the 
prior information and uncertainty concerning Q  utilizing the Beta PDF in (1). We have found 

that it takes skill to convert a priori scientific information into a probabilistic distribution. 
Consequently, students are reminded in class of familiar facts concerning the Beta distribution 
and how to use those facts to choose their prior. Students are encouraged to explore their choice 
of a and b graphically by altering these values and observing how the Beta distribution changes.  
We have also found it beneficial to require students to give the mean, standard deviation and 
quantiles of their prior distribution. Taking the time to reflect on the meanings of these 
distributional summaries helps the student strengthen their argument for why they chose the 
particular values of a and b. More specifically, if  Beta ,Q a b   where a and b are 

hyperparameters, then the mean and variance of Q  are given by 
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   EQ Q

a
e

a b
  


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V
1
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Q Qv
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 

,     (5) 

 
respectively (see A.2.1). Thus, a can be chosen relative to b so that the mean of the distribution 
reflects the prior estimate of being a Bayesian.  
 
At this point, one could also bring up the notion that the effective sample size for the Beta prior is 
a b  (Morita et al. 2008). As such, a b could be understood to represent the number of 
hypothetical inferential problems out of which a  of those problems are addressed via a Bayesian 
approach. Students can also see from (5) that when this effective sample size  a b  is large, 

then the variability of the prior distribution is small. Rather than having students guess the values 
of a and b, it is possible to select these values so as to obtain mean Qe  and uncertainty Qv  using  

 

  
 21
1Q Q Q Q

Q

a e e e v
v

      ,   1 Q
Q

a
b e

e
  .                                                      (6)  

 
Specification of hyperparameters can also be discussed with students for commonly used priors 
to provide additional insights. A vague prior distribution is dispersed over the unit interval with 
small a b while an informative prior distribution is concentrated with large a b . If a b , 
then the PDF is symmetric about 0.5. A uniform prior has 1a b   and Jeffreys prior has 

0.5a b  (Robert 2001, pp.  129-130). Zhu and Lu (2004) consider the least influential prior 
with 0a b  . However, this prior is improper as it does not integrate to 1. This prior can be 
approximated using the common trick of choosing a and b to be close to 0.  
 
Examples of the prior PDFs for our three students (i.e. Freddy Frequentist, Betty Bayesian, 
Naive Ned) are plotted in Figure 2 and distributional characteristics are provided in Table 2.  
 
Table 2. Summaries of the prior distributions for the three types of students including values of 
the hyperparameters (a, b), mean ( Qe ), standard deviation ( 0 5

Qv . ), and quantiles (q). 

                             

Name   a b Qe  0 5
Qv .  

0 025q . 0 25q .  0 50q .  0 75q .  0 975q .

Frequentist Fred   1  9 0.10   0.091 0.003 0.032 0.074 0.143 0.336 
Betty Bayesian   3  1 0.75  0.193 0.292 0.630 0.794 0.909 0.992 
Naive Ned   1  1 0.50  0.289 0.025 0.250 0.500 0.750 0.975 
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Figure 2. Prior distributions for Freddy Frequentist, Betty Bayesian, and Naive Ned.  

     
 
Table 2 shows that when Freddy Frequentist is presented with the population of problems P  that 
on average he would use a Bayesian approach in 1 out of 10 of these problems and no more than 
4 out of 10 of these problems (prior probability less than 0.025). In light of (5), 1/10 0.1Qe    

and 0.1(0.9) /11 0.09Qv   . Along with the “black” profile in Figure 2 and the first line of 

Table 2, Freddy Frequentist might also provide the following explanation for his choice of prior:  
 

“My prior is specified to demonstrate a high probability of using a Frequentist 
approach with a fair amount of certainty. That is, I imagine I would only use a 
Bayesian approach in 1 out of 10 inferential problems. Thus, I chose my prior mean 
for being Bayesian as 0.1 with uncertainty less than 0.1. In fact, there is greater than 
50% chance that my probability of being Bayesian will be between 0.03 and 0.15.”  
 

Once a Beta prior has been specified, values such as those in Table 2 are rather simple to obtain 
to answer A.2. Thus, the grading of A.2 merely involves checking if these summaries match the 
specified distribution. Generally, students perform well on this part. On the other hand, A.1 is 
one of the most challenging and important questions on the assignment. The grader must 
ascertain whether or not the specified Beta prior matches the one the student intended. Prior 
justification is critical in this assessment; just as it is in any Bayesian analysis. Thus, it is not 
surprising that students struggle with this question. We have found that plotting various Beta 
PDFs, thinking about the numerical summaries in (5), briefly exploring effective sample size, 
and going over some of the commonly used Beta priors helps to prepare students to adequately 
justify their prior distribution.  
 
5.  A Simple Experiment 
 
Section B of the assignment requires each student to conduct an experiment for their randomly 
selected problem so that they have data to inform their answer to Q. In this section, and for the 
remainder of the manuscript, we will refer to the four questions in Section B of the assignment in 
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Table 1 as B.1-B.4. Our population P consists of proportion problems. Each of these problems 
are modeled with the Binomial distribution where we let Y  denote the number of trials out of n 
that results in a success and we let   denote the true probability of success. Assuming 
independent trials, then  Binomial ,Y n  .  

 
Question B.1 asks students to randomly generate a number of from 1,..., N  which can be done 
using computer programs. For our student examples, we will assume that Freddy Frequentist 
draws a problem in which he must assess the probability that a common thumbtack lands point 
up (thumbtack experiment). Betty Bayesian draws a problem in which she must assess the 
probability that a local resident has children (child experiment). Naive Ned draws a problem in 
which he must assess the probability that a car on a major city street contains a passenger talking 
on a cell phone (cell phone experiment).  
 
Question B.2 asks students to explain whether or not they used a Frequentist or Bayesian 
inferential approach when conducting inference for their problem. Students should address points 
(B1), (B2), (B3) from Section 2. Formulas that students might use are provided in the Appendix 
for convenience for the Frequentist approach (A.1) and for the Bayesian approach (A.2). It is 
helpful for students to clearly address their inferential approach here as this will dictate their 
answers to questions B.3 and B.4. 
 
Question B.3 asks students to justify a selected value for the number of trials, n, for their 
randomly selected problem. Sample size selection can be tricky due to its connections with the 
inference procedure. For example, large sample sizes allow for normal approximations for the 
Frequentist approach (A.1.3) and for the Bayesian approach (A.2.3). Large sample sizes also 
decrease the influence of prior information (Press 2003, p. 174) (see A.2.2). While sample size 
calculation is not a main objective of the assignment, students find it to be a hurdle in carrying 
out their experiment. The most common question on the assignment is, “What sample size 
should I use?” For introductory classes, B.3 is not required and the instructor can specify the 
number of trials (such as 10, 15, or 20). However, we encourage students in advanced classes to 
think about sample size selection since it is fundamental to experimentation. One approach is to 
select a sample size so that the uncertainty is below a threshold (see A.1.2, A.2.2). Sample size 
can also be chosen so that normal approximations hold or to have particular weight on the prior 
mean (see A.1.3, A.2.2, A.2.3).  
 
Question B.4 asks students to provide a brief summary of their experimental results including the 
number of successes, point estimate, uncertainty, and a 95% interval estimate for  . Answers to 
this question are provided in Table 3 for our student examples Freddy Frequentist, Betty 
Bayesian, and Naive Ned. Freddy used a Frequentist approach for the tack experiment and Ned 
used a Frequentist approach for the cell phone experiment. They calculated their estimate 
ˆ y n   by evaluating the maximum likelihood or method of moments estimator using their 

values of n and y (see A.1.2). Their measure of uncertainty corresponds to the estimated standard 
error (see A.1.3). They found 95% confidence intervals which would capture the true fixed value 
of   in over 95% of the samples. Freddy obtained samples for his experiment by tossing the 
tack. It was easy for him to perform a large number of tosses, so he was able to use the large 
sample confidence interval (see A.1.4). Ned picked a moderately busy street in town and 
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systematically sampled 20 cars to determine how many drivers were talking on cell phones. Ned 
chose his sample size to be moderately large so that the associated uncertainty would be no 
larger than 0.125. Not wanting to rely on large sample assumptions, he computed a 95% 
confidence interval appropriate for a small number of trials (see A.1.4). Betty conducted a 
Bayesian approach for the child experiment. She specified a Beta prior distribution with 1.5a   
and 2.5b   as she explains in her answer below. She randomly selected 10 houses and found 
that 4 residents indicated they had at least one child. She used her observed values of n and y to 
update the Beta prior to obtain the Beta posterior distribution as in (4). Her measure of posterior 
uncertainty is the posterior standard deviation (see A.2.2). She also computed a 95% credible 
interval using the highest posterior density (HPD) region (see A.2.4).  
 
Table 3. Answers to question B.4 for the three types of students which includes values of the 

number of trials (n), number of successes (y), estimate of   ̂ , uncertainty associated with the 

estimate  ˆu  , and a 95% interval for  .  

                             

Name   n y ̂   ˆu    95% interval for   

Frequentist Fred   50  24 0.480  0.071    0.342     0.538 
Betty Bayesian   10    4 0.367  0.120    0.141     0.602   
Naive Ned   20    4 0.200  0.089    0.050     0.400   

 
For illustrative purposes, we also include answers to (B.1) (B.2), (B.3), (B.4) for Betty Bayesian.  

 
(B.1)  “My randomly selected problem is to assess the probability that a local 
resident has children. Thus, I plan to sample residences (by address) within a mile 
radius of my own. I am interested in this problem given that I enjoy babysitting to 
earn money.”    
 
(B.2)  “I used a Bayesian approach to assess the probability that a local homeowner 
has children in order to incorporate my knowledge of the nearby residences. Thus, I 
let   denote this probability which I am treating as random to recognize the 
uncertainty I have regarding its value (B1). I chose a conjugate beta prior distribution 
to incorporate my knowledge concerning  . Since I babysit and I have lived in this 
area for awhile, I wanted to specify a moderately informative prior. Based upon my 
knowledge, I expect the probability to be about 0.3 with a standard deviation less 
than 0.2. Thus, I chose the hyperparameters a and b to achieve this expected value 
and standard deviation (see equation (5)). From the results of my particular 
experiment (B3), I observed 4 out of 10 residences which had at least one child. 
These results produced the posterior distribution for   of Beta(5.5, 9.5) (see 
equation (4)). I plotted my prior and posterior PDFs (see Figure 3).”  
 
(B.3)  “As mentioned in (B.2), I wanted to incorporate my prior information into this 
problem. I also wanted to have a small sample size since I would have to meet with 
people at the randomly sampled residences. Thus, it seemed to me that I could best 
achieve these two objectives with a sample size of 10 which places weight 
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1

3

a b

n a b

     
 on my prior mean (see A.2.1). This sample size also maintains an 

uncertainty or posterior standard deviation no larger than 0.13 (see A.2.1).” 
 
(B.4)  “My figure (see Figure 3) shows the plot of my prior and posterior 
distributions for  . The plot includes labels for my posterior estimate which 
corresponds to the posterior mean value    0.3 / 3 2 0.4 / 3 0.3667   (see A.2.2) so 

that the posterior mean is slightly higher than the prior mean. The plot also shows the 
95% HPD credible interval for   which is the shortest interval containing 95% of 
the posterior probability. Thus, there is 95% posterior probability that   is between 
0.141 and 0.602. Uncertainty is assessed using the standard deviation of the posterior 

distribution which has the value 
   0.5
0.3667 1 0.3667

0.1205
1.5 3.5 10 1

 
    

 (see A.2.1). The 

posterior uncertainty is less than the prior uncertainty due to observing 10 residences. 
The point estimate of 0.3667 seems to closely agree with my prior estimate. I could 
incorporate this knowledge in a future experiment using a more concentrated prior."  

 
Figure 3. The prior and posterior distributions for Betty Bayesian in the child experiment. 
 

 
 
Section B of the assignment contains challenging questions as students are expected to carry out 
an experiment and interpret the results. The grading of B.1 simply involves checking that the 
students have their scenario picked out and have adequately provided a brief description of it. 
Question B.2 may be the most difficult on the assignment. For this reason, we ask students to 
focus on addressing (B1), (B2), (B3) (or (F1), (F2), (F3)) in their written explanation. This 
guidance has improved student answers and causes them to focus on the critical distinctions 
between the two paradigms. The structure also helps the grader to better assess student 
understanding of this distinction. The assessment of question B.3 depends upon guidelines set by 
the instructor. This flexibility is necessary given differences between course levels. In advanced 
courses, we have found it helpful to utilize sample size guidelines (see A.1.2, A.1.3, A.2.2, 
A.2.3). The grader can then assess whether or not the students have adequately utilized those 
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guidelines. Students typically do well reporting the results from their experiment. However, 
some students struggle to correctly interpret their interval estimate in light of their chosen 
paradigm. Thus, the grader should be aware of such interpretation problems. Instructors also may 
wish to spend class time reviewing the interpretation of inferential results in light of the 
characterizations (B1), (B2), and (B3). These skills are crucial to the practicing statistician.  
 
6.  The Posterior Distribution  
 
The next portion of the assignment (part C and subsequently questions C.1-C.4) involves 
determining the posterior distribution of Q . The data from the experiment utilized to update the 

prior on Q  is based upon a single Bernoulli trial where 1n  . The value from the trial is 1x   

if a Bayesian approach is used to conduct inference for the randomly selected problem and 0x   
if a Frequentist approach is used to conduct inference for the randomly selected problem. The 
PDF,  x  , is the PDF of the  Beta ,1x a x b    distribution using (4). For instance, if a 

Bayesian approach was utilized in the experiment, then 1x   and the posterior distribution is 

 Beta 1,a b , and if a Frequentist approach was utilized, then 0x   and the posterior 

distribution is  Beta , 1a b  . The usual Bayes estimate is the posterior mean (see A.2.2)  

 
1ˆ

1 1 1Q

a a b x a
x

a b a b a b a b

                    .     (7)
 

 
The posterior mean is a weighted average of the prior mean and the maximum likelihood 

estimator with weight 
1

a b
w

a b




 
 given to the prior mean. The uncertainty in the Bayes 

estimate corresponds to the standard deviation of the posterior distribution (see A.2.2).  
 
Questions C.1, C.2, and C.3 from Table 1 involve summarizing aspects of the posterior 
distribution. We once again consider answers to these questions for Freddy Frequentist, Betty 
Bayesian, and Naive Ned. Table 4 gives summaries of the corresponding posterior distributions 
for C.1. Figure 4 gives the plot of the posterior distributions requested by C.2. The plots of the 
posterior PDFs in Figure 4 can be compared to the prior PDFs in Figure 2.  
 
Table 4. Summaries of the posterior distributions for the three types of students which includes 
the hyperparameters (a, b), value from the experiment (x), prior weight (w), mean  

( Qe ), standard deviation ( 0 5
Qv . ), and quantiles (q).  

                             

Name a b x w Qe  0 5
Qv .  0 025q . 0 25q .  0 50q .  0 75q .  0 975q .

Frequentist Fred 1 9 0 0.909 0.091 0.083 0.003 0.028 0.067 0.129 0.309
Betty Bayesian 3 1 1 0.800 0.800 0.163 0.398 0.707 0.841 0.931 0.994

Naive Ned 1 1 0 0.667 0.333 0.236 0.013 0.134 0.293 0.500 0.842
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Figure 4. Posterior distributions for Freddy Frequentist, Betty Bayesian, and Naive Ned.  

  
 
The spread of the distributions in Figure 4 illustrate the uncertainty contained in the posterior 
distribution. As each student plots their own posterior distribution, they can observe that the 
degree of uncertainty in the posterior can be summarized by the 95% equal tailed credible 
interval,  0.025 0.975,q q . For the three student examples, these credible intervals are provided in 

Table 4. Highest posterior density intervals could also be calculated (see A.2.4).  
 
Question C.3 asks students to describe the change in the prior and posterior distributions using 
the absolute relative mean difference, given by 
 

prior mean posterior mean

posterior std.dev.


.        (8) 

 
Equation (8) measures the change from prior mean to posterior mean relative to the posterior 
uncertainty. For our hypothetical students, the difference is most pronounced for Ned and least 
for Fred. This relative change is 11% for Freddy Frequentist, 31% for Betty Bayesian, and 71% 
for Naive Ned. 
 
An example of an answer to C.4 is given below from the perspective of Naive Ned.   
 

“Based upon my vague prior with 1a   and 1b  , and the result of my experiment 
in which I used a Frequentist analysis so that 0x  , my posterior distribution for the 
probability of being a Bayesian is  Beta 1,2 . This means my posterior estimate of 

this probability is 0.333 and a 95% credible interval based upon the percentiles is 
(0.013, 0.842). The 95% credible interval means that there is a 95% chance that my 
probability lays between these endpoints. Thus, there is a large amount of 
uncertainty in my answer to Q. However, this is not surprising given my vague prior 
and what I learned from conducting a single experiment. Nevertheless, the result 
from this experiment has refined my answer to Q given that my prior estimate was 
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larger with a value 0.500 and my 95% prior percentile interval was wider with values 
(0.025, 0.975) (see Table 2).” 
 

Questions C.1, C.2, and C.3 utilize summaries based upon the posterior distribution. Question 
C.3 requires a summary involving both the prior and posterior distribution. Evaluation of these 
questions involves checking that the summaries are correct for the given posterior distributions. 
Students generally do well on these questions. The key part is C.4 where the student is asked to 
answer the ultimate question Q. A complete answer to this question involves the interpretation of 
the posterior distribution and how it pulls together prior information and the experimental result.  
This is a daunting task for the student, especially one being introduced to a Bayesian perspective. 
Yet, this is the purpose behind the assignment. Thus, the grader needs to assess if the student has 
adequately extracted the information and characterized the uncertainty from the posterior 
distribution to provide a practical answer to Q. An example of an adequate answer is provided 
above by Ned. A poor answer would be one in which summaries of the posterior distribution are 
merely reported without an accurate interpretation of these summaries or a description of how 
these summaries were obtained in light of the prior specification and the experimental result. 
Students are aided in this process through the individual questions in parts A, B, and C which 
break down their answer into smaller parts. As a result, question C.4 requires a short summary of 
the Bayesian approach that led to their answer to Q.   
 
7.  Conclusions 
 
The purpose of the proposed exercise is for students to gain personal experience with the 
Bayesian paradigm. We have found that students struggle making the transition from the 
mechanical presentation of Bayes Theorem to practical implementation of the Bayesian 
paradigm. These challenges include defining prior distributions, understanding differences 
between Frequentist and Bayesian approaches to statistics, the rationale behind extending Bayes 
theorem to incorporate uncertainty, and the commonly held view that one has to be either a 
Frequentist or a Bayesian. This assignment attempts to address each of these difficulties. Thus, it 
can be quite helpful to spend a large portion of a class period to reflect upon these challenges.  
 
As mentioned by Robert (2001, p. 106), specification of the prior distribution is the most 
important, and perhaps the most difficult aspect of the Bayesian analysis. Thus, it is not 
surprising to find that many students say that while they have information for their prior 
distribution, they have a hard time quantifying and characterizing that information. Plots of the 
student prior distributions are shown in class. Relating the uncertainty in the prior to student 
background, experience, preference, and simplicity as in Figure 1 aids in student understanding 
when it comes to prior specification. Discussions regarding informative and non-informative 
priors naturally come up. Students could also be asked to think of ways to specify a prior for a 
client. For example, it might be convenient to have the client think about the expectation, or 
balance point, of their prior distribution, along with their assessment of prior uncertainty. These 
values can then be put in equation (6) to obtain the hyperparameters. Plots of prior distributions 
could then be shown to the client. In addition, it may be helpful for the client to specify the mode 
and percentile of the prior distribution as in Branscum, Gardner, and Johnson (2005). 
Uncertainty concerning the hyperparameters a and b can also be accommodated using a 
hierarchical model (Robert 2001, p. 143) whereby prior distributions are assigned to the 
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hyperparameters. An empirical Bayes approach is another alternative where the hyperparameters 
are estimated by applying Frequentist methods to the marginal distribution 

     m x L y d     (Press 2003, p. 212).  

 
The second challenge is for students to understand differences between the Frequentist and 
Bayesian approaches. Thus, the class is informed of the number of students who used a Bayesian 
approach in their experiment which is typically less than one-third for these proportion problems. 
According to (A.2.2), the posterior mean is  
 

   E
a a b y n

y
a b n a b n n a b

               
.                                                               (9)  

 
The sample size n can be pre-selected to produce specific weights on the prior mean as a and b 
are known a priori. We see that for large n , relative to a and b, the weight on the sample mean is 
large. Equation (9) also shows that the Frequentist answer can be obtained with an improper 
prior with 0a b   for any n  while an approximate Frequentist answer is obtained when a and 
b are small relative to n . While these two approaches to statistical inference differ in 
interpretation and philosophy, they do not necessarily differ in terms of answers. Thus, it is 
important when expressing the differences between the Bayesian and Frequentist paradigms to 
focus on the Bayesian characterizations (B1), (B2), and (B3). It can also help students to hear 
some of the better answers to question B.2 during the class discussion.   
 
The third challenge refers to the incorporation of uncertainty in Bayes theorem. Plots can be 
shown of student posterior distributions and compared to the prior distributions. These 
probability density functions illustrate a students’ answer to Q both in terms of the mean and in 
terms of the uncertainty. Many students express surprise by how little their posterior distribution 
changes from their prior distribution. This provides a good opportunity to point out the amount 
of information these students have given to their prior distributions (effective sample size) 
relative to the single Bernoulli trial from the tack experiment. These students can also be 
reminded of their ongoing growth as statisticians. While it might be expected that the uncertainty 
in their prior distribution will decrease with added experience, background, and ability, the 
opposite may be true for many statisticians whose preference can vary widely between 
inferential problems. Students are reminded that for conjugate families, it is not too difficult to 
mathematically incorporate uncertainty through the posterior PDF as shown in Section 3. This is 
because the required integration in (3) is rather straightforward and the posterior distribution can 
be obtained simply by updating the hyperparameters of the prior distribution by the experimental 
result. In cases outside of conjugate families, it may not be so trivial to obtain the posterior PDF. 
In these cases, numerical techniques are needed to solve integration(s) like those in (3). These 
points provide a nice way to introduce students to popular computational techniques such as 
numerical integration, Monte Carlo methods, and Markov Chain Monte Carlo methods 
(Metropolis-Hastings, Gibbs Sampling) (Robert 2001, Ch. 6). These advanced computational 
methods are merely a tool to implement the Bayesian approach.     
 
This assignment arose out of the perceived need for students to gain practical experience using 
the extended form of Bayes Theorem in (3) by the instructor of this statistical inference course.  
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In this particular course, other inference topics are later discussed from the Bayesian framework 
including hypothesis testing, interval estimation, and prediction. Admittedly, students do not 
need this assignment to carry out the mathematical details required for these topics. However, 
students who have completed the assignment are more likely to ask about specifying the priors 
for these inference procedures and can more easily interpret Bayesian results. This is especially 
true for those students who have a low probability of being Bayesian. While these students may 
not have a preference for Bayesian methodology, the assignment provides them with some 
background, experience, and ability to carry out this approach. Thus, the students who have been 
trained mostly in Frequentist methodology are better prepared to comprehend and to utilize 
Bayesian concepts. The instructor has also noticed that it is easier for students who have 
completed the assignment to utilize Bayesian methods, including applications in consulting, 
research, and in other advanced statistical methods courses. Many students tend to see the 
assignment as challenging, so it is important to remind them of the practical experience they 
have gained from this assignment. It is also helpful to refer students back to this assignment 
when additional Bayesian topics are discussed later in the course.   
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Appendix 1 
Formulas for the Frequentist Inferential Approach 

 
Let Y  be a random variable denoting the number of successes in n  independent Bernoulli trials 
each of which has unknown probability of success  . In Appendix 1,   is considered to be a 
fixed unknown constant.  
 
(A.1.1)  The sampling distribution of Y is denoted  Binomial ,Y n  . This distribution has  

PMF      {0,1,..., }1
n yy

n

n
f y I y

y
    

  
 

. The expectation is  E Y n   and the variance is 

   V 1Y n    .  

 
(A.1.2)  The method of moment (MOME) and maximum likelihood (MLE) estimators are each 

given by 
1ˆ Y
n

  (Casella and Berger 2002, p. 313, 318). The corresponding standard error is 

 û      
1

21ˆse 1
n

      
 

. Since  û 
 
is maximized at 1/ 2  , the sample size can be 

chosen so that the uncertainty is below threshold   when   124n 


 . 

 

(A.1.3)  The large sample distribution of ̂ is 
 1ˆ Normal ,~

n

 
 

 
  

 

● . This large sample 

approximation is regarded reasonable when  min , 5Y n Y   (Casella and Berger 2002, p. 105). 

 
(A.1.4)  A 1   confidence interval for   can be based upon the large sample distribution in 

(A.1.3) and is given by  
1

2

1ˆ ˆ ˆ1z
n  


   (Casella and Berger 2002, p. 497). A confidence 

interval for   in small samples can be obtained using the Clopper-Pearson interval 

,
1 1
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L U
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F F

 
   

 which is based on multiples of the quantiles of the F-distribution so that 

;2 , 2( 1)
1 2L

y
F F y n y

n y

       
 and 

1
1 ;2( 1), 2( )

2U

y
F F y n y

n y

        
 (Casella and 

Berger 2002, Problem 9.21). 
 
(A.1.5)  The p-value for testing 0 0H :   is denoted as  0P Y y   which is computed with 

respect to the sampling distribution in (A.1.1) and the observed value y (Casella and Berger 
2002, Problem 8.49 (a)). The p-value can also be calculated using the large sample distribution 

for ̂  in (A.1.3) as  0
ˆˆP     where ̂  is the estimated value from (A.1.2). 
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Appendix 2 
Formulas for the Bayesian Inferential Approach 

 
Consider the scenario described in Appendix 1. In Appendix 2, let   denote the random variable 
for the true probability of a success.  
 

(A.2.1)  Suppose  Beta ,a b   which has PDF        1 11
(0,1)B , 1

baa b I        where 

 B ,a b  is the beta function given by      
   

1 11

0
B , 1

baa b
a b d

a b
   

  
   . The expectation 

is  E
a

a b
 


 and the variance is  

   2V
1

ab

a b a b
 

  

   E 1 E

1a b

    
 

.  

 
(A.2.2)  The Bayes estimate (under squared error loss) is the expected value of the posterior 
distribution in (4) or  E y  (Casella and Berger 2002, p. 325). Using (A.2.1) and (A.2.2), the 

posterior mean is  E
a a b y n

y
a b n a b n n a b

               
 which is a weighted average of the 

prior mean and the maximum likelihood estimate of   in (A.1.3). A measure of uncertainty is 
taken to be the standard deviation of the posterior distribution in (3). By (A.2.1), this is  û y 

      
   
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sd |

1

ny a n y b
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   
  
      

. The uncertainty can be shown to be maximized at 

 * / 2y n b a n   . The sample size can be chosen so that the uncertainty is below threshold   

when   121 4n a b 


     . 

 
(A.2.3)   From Press (2003, p. 173), the large sample posterior distribution for a parameter   is  
 

  1ˆ ˆ ˆ| Normal , J       where  
 
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 


. For the Binomial model, ̂  is 

given in (A.1.2) and    
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J 

 
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
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(A.2.4)  A credible interval is of the form  L U,C C  such that  L U 1P C C y      . For an 

equal tails credible interval, L / 2C B  and U 1 / 2C B   where B  is the   quantile of the 

distribution in (4) which depends upon y, n, a, and b. For finding the highest posterior density 
(HPD) region, LC  and UC  must satisfy    L UC y C y  when the mode of the posterior 

distribution lies in  0,1 , L 0C   and U 1C B   when the mode is 0 , LC B  and U 1C   when 

the mode is 1 (Casella and Berger 2002, pp. 441-442). A credible interval can also be calculated 
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using the large sample posterior distribution in (A.2.3) which is the same as the large sample 
interval in (A.1.4).  
 
(A.2.5)  The posterior probability for testing 0 0H :    is denoted  0P y   which is 

computed by integrating the posterior PDF or evaluating the corresponding Beta CDF (Casella 
and Berger 2002, p. 379). This probability can also be evaluated using the large sample posterior 
distribution in (A.2.3).  
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