R Commands for Introduction to Statistical Modeling

DANIEL KAPLAN

OCTOBER 5. 2008

This sheet is intended to help you remember R commands and some of the ways they are used. It's assumed that you already understand the statistics and purpose of the commands. > marks the command you type. + marks the second line, if any, of the command. Installing R _ syntax: Download and execute the "binary" file appropriate for your operating system: Windows, Mac OS X, Starting R _____ Datasets and convenience functions for the Introduction to Statistical Modeling course are contained in the "workspace" file ISM.Rdata. Double-click on that > sd(kids\$width) file to start a new session of R. Functions defined in ISM.Rdata are: resample, > median(kids\$width) shuffle, r.squared, do. [1] 9 Reading in Spreadsheet/Tabular Data ____ [1] 0.7 A data table (called a "data frame" in R) is organized into cases and variables. 60% Data from the ISM course 9.08 Relevant operators: ISMdata. This takes a file name (in quotes) and returns a data frame > kids = ISMdata("kidsfeet.csv") 7.90 > runners = ISMdata("ten-mile-race.csv") • Your own data Store your data in a spreadsheet in CSV format. There should be a header row. After that, each row is В G one case, each column is one variable. 20 19 school volumes newvols serials staff expe Harvard 295.0 101.0 1008 182.9 53.3 512 Stanford 163.0 46.0 489 64.9 427 Columbia 153.2 61.8 Cornell 195.2 412 В Princeton 120.1 34.2 317 252 Chicago 141. Cn 52.0 Duke 115.8 32.0 40.1 288 242 10 Northwestern 94.1 Brown 121.5 13.3 181 MIT 48.9 17.4 195 13 Dartmouth 53.9 20.0 156 Relevant operators: read.csv

others.

12

> mydata = read.csv("fish.csv")

Simple Descriptive Statistics For describing data one variable at a time. Relevant operators: mean, sd, median, IQR, or even summary, quantile, table, prop.table. There are two basic styles when selecting a variable from a data frame: using with or using the \$ reference > mod > with(kids, mean(width)) [1] 8.992308 > mean(kids\$width) [1] 8.992308 Either way is fine. I encourage the \$ method. • Quantitative Variables [1] 0.5095843 > IQR(kids\$width) > guantile(kids\$width, 0.60) > summary(kids\$width) Min 1st Qu. Median Mean 3rd Qu. Max 8.65 9.00 8.99 9.35 9.80 • Categorical Variables Count the number of cases at each level: > table(kids\$sex) Convert the count to a proportion. > prop.table(table(kids\$sex)) G 0.5128205 0.4871795 Linear Modeling ____ Constructing linear models. Relevant operators: lm, r.squared, summary, anova > sd(trials) Fit a model. All of these three styles are equivalent,

but I recommend the first one:

> mod = lm(width \sim length + sex, data=kids) or > mod = with(kids, lm(width ~ length + sex)) > mod = lm(kids\$width~kids\$length+kids\$sex) Display the coefficients: Coefficients: (Intercept) lenath sexG 3.641 0.221 -0.233 • R-squared > r.squared(mod) [1] 0.45954 • Regression table including standard errors: > summary(mod) Coefficients: Estimate Std. Error t value Pr(>|t|) 3.6412 1.2506 0.0061 (Intercept) 2.91 0.2210 0.0497 length 4.45 8e-05 sexG -0.2325 0.1293 -1.80 0.0806 • ANOVA table > anova(mod) Analysis of Variance Table Response: width Df Sum Sg Mean Sg F value Pr(>F) (Intercept) 1 3154 3154 21287.88 < 2e-16 length 1 4 4 27.38 7.4e-06 1 0.48 0.48 3.23 0.08 sex 0.15 Residuals 36 5 Resampling_ Relevant operators: resample, shuffle, do • Bootstrapping a Standar Error The standard error reflects variability due to sampling. > with(kids, mean(width)) [1] 8.9923 > trials = do(500)*with(resample(kids), mean(width)) + [1] 0.076145 For a model:

> lm(width~le	ngth+sex. da	ata=kids)	
(Intercept)	length	sexG	
3.641	0.221	-0.233	
<pre>> trials = do(</pre>	500)*		
+ lm(width~l	ength+sex, c	lata=resample(k	ids))
<pre>> sd(trials)</pre>			
(Intercept)	length	sexG	
0.939525	0.036822	0.120385	

• Hypothesis Testing

Implement the null hypothesis that sex is not related to width, but length might be:

```
> trials = do(500)*
```

lm(width~length+shuffle(sex), data=kids) +

	(Intercept)	length	shuffle(sex)G
	2.8575581	0.2480365	0.0051818
>	sd(trials)		
	(Intercept)	length	<pre>shuffle(sex)G</pre>
	0.2228825	0.0085814	0.1326187

Graphics_

Scatter Plot

> xyplot(width ~ length, data=kids)

Try: xyplot(width~length|sex,data=kids)

• Box and Whiskers Plot

> bwplot(width ~ sex, data=kids)

• Histograms

> histogram(~ age, data=runners) Don't forget the leading tilde (~).

Extra: Try also

- > histogram(~ age | sex, data=runners) • Bar Charts
- > barchart(table(kids\$sex), horizontal=FALSE) > run.sim(campaign.spending, 4,

Simulations _

Simulations generate data from a hypothetical > run.sim(campaign.spending, 4, causal network.

Relevant function: run.sim

Available hypothetical causal networks include: campaign.spending, jock, university.test, heights, electro, aspirin, salaries, etc.

To see the variables, type the name of the hypothetical causal network

> campaign.spending Causal Network with 4 vars: _____ popularity is exogenous polls <== popularity</pre> spending <== polls</pre> vote <== popularity & spending</pre>

Observational Study

>	<pre>run.sim(campaign.spending,</pre>			4)
	popularity	polls	spending	vote
1	44.141	46.875	59.484	42.780
2	25.577	30.991	46.322	18.655
3	47.376	46.616	45.275	52.207
4	48.393	50.003	56.839	54.389

• Experimental Study

Two types of experiments are supported.

Create the experimental intervention of the desired length:

- > intervene = rep(c(0, 100), length.out = 5) 1) Impose the intervention directly.

+	<pre>spending=intervene)</pre>			
	popularity	polls	spending	vote
1	49.931	50.071	0	48.009
2	66.392	69.752	100	74.800
3	73.079	71.553	0	58.396
4	51.752	53.136	100	57.155

2) Add the intervention on top of the "natural" values:

ł	spending=	ene, inje	ct=TRUE)	
	popularity	polls	spending	vote
1	54.129	52.972	59.853	67.638
2	70.974	65.608	126.752	85.580
3	75.549	71.873	34.934	67.062
4	50.391	48.954	160.389	74.577

