Assistive Technologies for Second-Year Statistics Students who are Blind

Rob Erhardt ${ }^{1}$ and Michael Shuman ${ }^{2}$

${ }^{1}$ Department of Mathematics and Statistics Wake Forest University
${ }^{2}$ Learning Assistance Center Wake Forest University

JSE CAUSE Webinar. Sep 2015.

Intro

- At Wake Forest University, a student who is blind enrolled in a second course in statistics. The course covered simple and multiple regression, model diagnostics, model selection, data visualization, and elementary logistic regression.
- Specifically, this talk will detail the extensive use of screen readers, LATEX, a modified use of R and the BrailleR package, a desktop Braille embosser, and a modified classroom approach.
- Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973.

Intro

STAT2
 Building Models for a World of Data

Ann R. Cannon - George W. Cobb - Bradley A. Hartlaub Julie M. Legler * Robin H. Lock - Thomas L. Moore Allan J. Rossman • Jeffrey A. Witmer

Intro

- There are six essential skills:

	Interpreting	Producing
Mathematical Writing	\checkmark	\checkmark
Computer Code	\checkmark	\checkmark
Images and Graphical Displays	\checkmark	\checkmark

High Peaks

- $n=46$ so-called "High Peaks" mountains of the Adirondacks in upstate New York
- Two variables are Time (hours needed for a round trip to hike to summit) and Length (miles).

$$
\text { Time }=\beta_{0}+\beta_{1} \cdot \text { Length }+\epsilon, \quad \epsilon \sim N(0, \sigma)
$$

High Peaks

> library (Stat2Data)
> data(HighPeaks)
> attach (HighPeaks)
> lm1=lm(Time ${ }^{\text {Length }) ~}$
> summary (lm1)

Call:
lm(formula $=$ Time ~ Length)

Residuals:

Min	$1 Q$	Median	3Q	Max
-2.4491	-0.6687	-0.0122	0.5590	4.0034

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $2.048170 .803712 .5480 .0144 *$
Length $0.68427 \quad 0.06162 \quad 11.105$ 2.39e-14 ***

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' $0.01{ }^{\prime *} 0.05$ '.' 0.1 , 1

Residual standard error: 1.449 on 44 degrees of freedom Multiple R-squared: 0.737, Adjusted R-squared: 0.7311
F-statistic: 123.3 on 1 and 44 DF, p-value: $2.39 \mathrm{e}-14$

High Peaks

Figure: Scatterplot and Residual plot for Time (hours) vs. Length (miles). Students will use these figures to assess assumptions of linearity and constant variance.

High Peaks

Normal Q-Q Plot

Figure: Quantile comparison and histogram of residuals.

Intro

There are six essential skills:

	Interpreting	Producing
Mathematical Writing	\checkmark	\checkmark
Computer Code	\checkmark	\checkmark
Images and Graphical Displays	\checkmark	\checkmark

Mathematical Writing: JAWS ${ }^{\circledR}$ Screen Reader

Well, it ain't no use to sit and wonder why, babe Even you don't know by now
And it ain't no use to sit and wonder why, babe It'll never do somehow
When your rooster crows at the break of dawn
Look out your window, and I'll be gone
You're the reason I'm a-traveling on
But don't think twice, it's all right.
~ Bob Dylan, Don't Think Twice
(play sound)

Mathematical Writing: Braille

- Grade 2 standard English Braille has $2^{6}-1=63$ unique characters; not enough for math!
- 8 -bit Braille extends to $2^{8}-1=255$ characters, and covers all ASCII symbols

> | 1 | 4 |
| :--- | :--- |
| 2 | 5 |
| 3 | 6 |
| 7 | 8 |

- All mathematical information can be encoded in ASCII through ATEX; therefore, a student can read math with a refreshable Braille display or using a screen reader, and can write using either a refreshable Braille display or a standard keyboard.
- Effectively, the student reads and writes in LATEX source code, and "compiles" in her head.

Mathematical Writing

$$
\begin{aligned}
\text { Time } & =\beta_{0}+\beta_{1} \cdot \text { Length }+\epsilon, \quad \epsilon \sim N(0, \sigma) \\
C_{p} & =\frac{S S E_{m}}{S S E_{k} /(n-k-1)}+2(m+1)-n
\end{aligned}
$$

Time = \beta_0 + \beta_1 \cdot Length + \epsilon, \hspace\{4mm \epsilon \sim $N(0, ~ \$ sigma $)$

C_p $=\backslash f r a c\left\{S S E _m\right\}\left\{S S E _k /(n-k-1)\right\}+2(m+1)-n$
(fast)
(middle speed)
(slow)

Mathematical Writing

BrailleNote ${ }^{\circledR}$ by HumanWare

Statistical Software

-aterm (32-bit)

```
txtStart(file="HW1.txt")
Qutput being copied to text file
use txtstop to end
txt> getwd()
[1] "C:/Users/WFU2012"
txt> data(HighPeaks)
txt> attach(HighPeaks)
The following object(s) are masked from 'HighPeaks (position 3)
    Ascent, Difficulty. Elevation. Length. Peak. Time
txt> lm1=lm(Time Length)
txt> UI(hist(lm1$resd))
Error in hist.default(lm1$resd) : 'x' must be numeric
txt> UI(hist(1m1 $resid))
This is a histogram, with lm1$resid marked on the x-axis, unless
used the xlab argument
There are a total of 46 elements for this variable.
It has 8 bins with equal widths, starting at -3 and ending at 5
The mids and counts for the bins are
mid = -2.5 count = 4
mid = -1.5 count = 6
mid = -0.5 count = 14
mid = 0.5 count = 13
mid = 1.5 count = 5
mid = 2.5 count = 1
mid = 3.5 count = 2
mid = 4.5 count = 1
txt>
```


C:\Users\WFU2012\HW1.txt

```
* C:\Users\WFUZ... x
```

* C:\Users\WFUZ... x
> getwd()
[1] "C:/Users/WFU2012"
> data(HighPeaks)
> attach(HighPeaks)
The following object(s) are masked from 'HighPeak:
Ascent, Difficulty, Elevation, Length, Peak, :
> lm1 = lm(Time ~ Length)
> VI (hist(lm1$resid))
This is a histogram, with lm1$resid marked on the
There are a total of 46 elements for this variabl;
It has 8 bins with equal widths, starting at -3 al
The mids and counts for the bins are...
mid = -2.5 count = 4
mid = -1.5 count = 6
mid =-0.5 count = 14
mid = 0.5 count = 13
mid = 1.5 count = 5
mid = 2.5 count = 1
mid = 3.5 count = 2
mid = 4.5 count = 1
(-) C:\Users\WFU2012\HW1.txt

```
- Modify the PATH variable to allow \(R\) to run in the terminal window
- Use the BrailleR package and the command txtStart keeps a log file; keep open in an internet browser and refresh

\section*{Images and Graphical Displays}

\section*{>VI(hist(lm1\$resid))}

This is a histogram, with lm1\$resid marked on the x-axis, unless you explicitly used the xlab argument.
There are a total of 46 elements for this variable.
It has 8 bins with equal widths, starting at -3 and ending at 5.
The mids and counts for the bins are...
mid \(=-2.5\) count \(=4\)
mid \(=-1.5\) count \(=6\)
\(\operatorname{mid}=-0.5\) count \(=14\)
mid \(=0.5\) count \(=13\)
mid \(=1.5\) count \(=5\)
mid \(=2.5\) count \(=1\)
mid \(=3.5\) count \(=2\)
\(\operatorname{mid}=4.5\) count \(=1\)


\section*{Images and Graphical Displays}


\section*{Conclusion and References}
- Cannon, A., Cobb, G., Hartlaub, B., Legler, J., Lock, R., Moore, T., Rossman, A., Witmer, J, (2013), Stat2: Building Models for a World of Data, New York, NY W.H. Freeman.
- Erhardt, R., Shuman, M. (2015). Assistive Technologies for Second-Year Statistics Students who are Blind. Journal of Statistics Education 23:2, 1-28.
- Godfrey, A. J. R. (2013), "Statistical Software from a Blind Person's Perspective," R Journal, 5(1), 73-79.
- Godfrey, A. J. R., Erhardt R.J. (2014), "Addendum to Statistical Software from a Blind Person's Perspective," \(R\) Journal, 6(1), 182.
- Godfrey, A. J. R. (2012), "BrailleR: Improved access for blind useRs," 2012. R package version 0.4. [p77]

Many thanks to W.H. Freeman; the Wake Forest Learning Assistance Center; Spencer Ashley, Sara Reinke, and Rebecca Kotsonis; and Dr. Jonathan Godrey of Massey University.```

