Computing in the Statistics and Data Science Curriculum

CAUSE/Journal of Statistics and Data Science Education webinar series

Upcoming webinars:

- Teacher education curriculum materials that develop statistical knowledge for teaching (Tuesday, February 9th, 2:00-3:00pm EST)
- Bayesian methods in the statistics curriculum (Tuesday, February 23rd, 4:00-5:00pm EST)
- "Playing the whole game" and "Data scraping for fun and profit" (Tuesday, March 23rd, 4:00-5:00pm EST)
- Signup at https://www.causeweb.org/cause/webinars

Consortium for the Advancement of Undergraduate Statistics Education

https://www.causeweb.org/cause

Breakout deadlines February 1, 2021

Mine Çetinkaya-Rundel

Senior Lecturer School of Mathematics University of Edinburgh

Data Scientist and Professional Educator RStudio

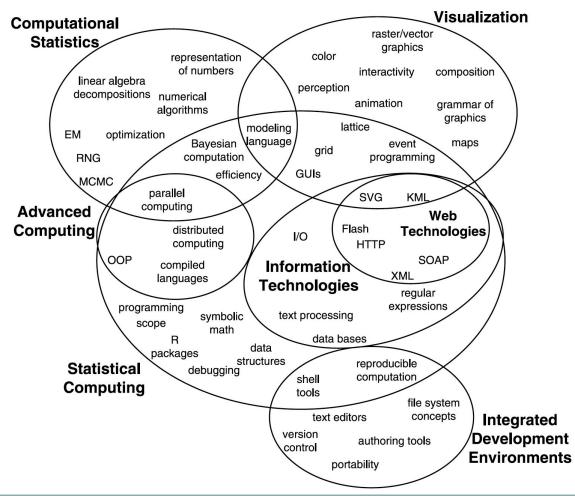
Associate Professor of the Practice Department of Statistical Science Duke University

Alex Reinhart

Assistant Teaching Professor Statistics & Data Science Carnegie Mellon University

But first, a few words from the special issue co-guest editor

Johanna Hardin Department of Mathematics & Statistics Pomona College


Computing in the Curriculum circa 2010

Nolan and Temple Lang posed the following questions in their paper "Computing in the Statistics Curriculum" (TAS, 2010):

- Computational literacy and programming are as <u>fundamental to statistical</u>
 <u>practice</u> and research as mathematics.
- Our field needs to <u>define statistical computing more broadly</u> to include advancements in modern computing, beyond traditional numerical algorithms.
- Information technologies are increasingly important and should be added to the curriculum, as should the ability to <u>reason about computational</u> <u>resources</u>, work with large datasets, and perform computationally intensive tasks.

Computing in the Curriculum circa 2010

Nolan and Temple Lang posed the following questions in their paper "Computing in the Statistics Curriculum" (TAS, 2010):

Special issue on Computing in the Curriculum

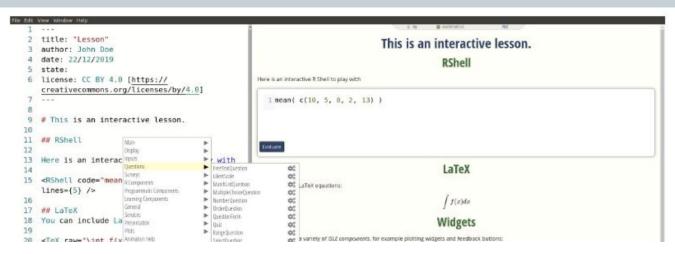
- Spurred by 10 year anniversary of the publication of Nolan and Temple Lang's paper
- Call for papers in 2019
- Reviews and revisions in 2020
- Publication scheduled for early 2021 (pandemic delays)

Papers in the special issue

- Editorial
- Commentary from Nolan and Temple Lang
- 14 papers on a variety of topics:
 - Creative teaching structures
 - Novel skills and habits
 - Computational thinking
- https://www.tandfonline.com/doi/full/10.1080/10691898.202
 0.1870416 for the editorial and link to individual papers

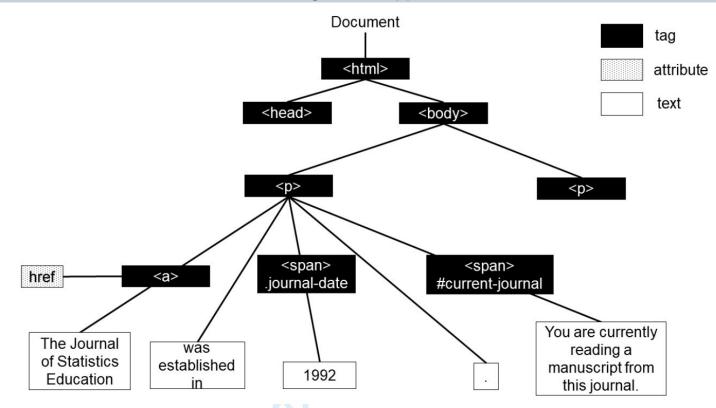
Creative Teaching Structures

Easy-to-Use Cloud Computing for Teaching Data Science

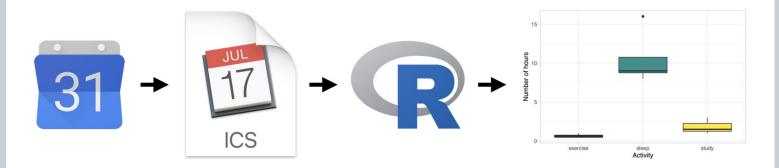

Kim & Henke

	Tool	Function	Details
Step 1	Jupyter Notebooks	Document	Build teaching material.
Step 2	GitHub	Online Repository	Store notebooks online.
Step 3	Binder	Cloud Service	Deliver in the cloud.

Teaching Statistical Concepts and Modern Data Analysis with a Computing-Integrated Learning Environment


(ISLE)

Burckhardt, Nugent, & Genovese


Web Scraping in the Statistics and Data Science Curriculum: Challenges and Opportunities

Dogucu & Çentinkaya-Rundel

Kim & Hardin

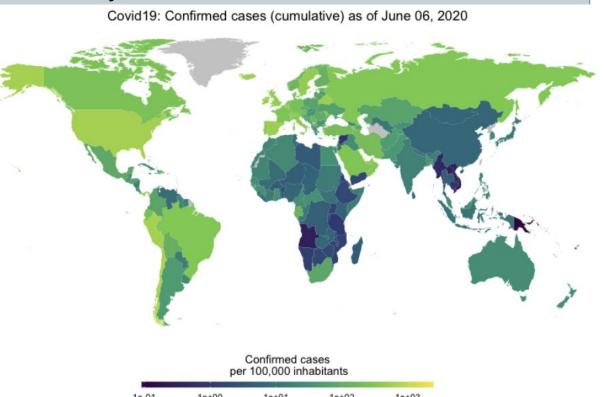
"Playing the whole game": A data collection & analysis exercise with Google Calendar

- 1. Log activities in Google Calendar
- 2. Export to .ics file format
- 3. Import to R using ical package
- 4. Analyze

Iterate as needed!

What is happening on Twitter?

A framework for student research projects with tweets


Boehm & Hanlon

Computational Skills for Multivariable Thinking in Introductory Statistics

Adams, Baller, Jonas, Joseph, & Cummiskey

"Proficiency in a statistical programming language facilitates the development of multivariable thinking by giving students tools to investigate complex data on their own."

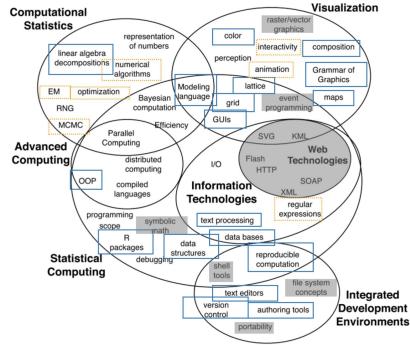
Case data: Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).

Population data: Worldbank. Data obtained on June 07, 2020. Code:

https://github.com/joachim-gassen/tidycovid19.

Teaching Computational Thinking

Data Science in 2020: Computing, Curricula, and


Challenges for the Next 10 Years

Schwab-McCoy, Baker, & Gasper

covered > 75%

covered > 50%

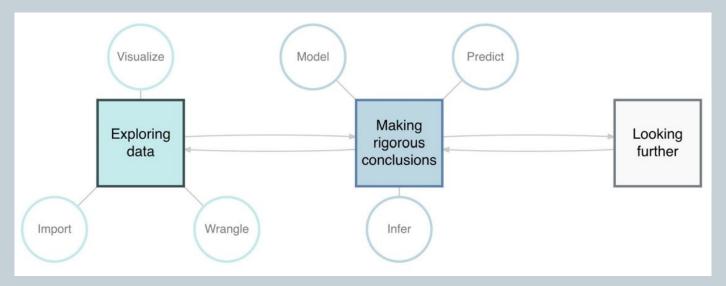
not asked

The nature of doing computation in the classroom requires students to be familiar with concepts like debugging, code formatting, and reproducible programming. However, <u>are we truly developing students who understand</u> how R, Python, or any of the other computing languages used to teach data science "think"?

Teaching Computational Thinking

Teaching Creative and Practical Data Science at Scale

Donoghue, Voytek, & Ellis


Key skills for the budding data scientist include how to explore and <u>debug</u> both code and data issues, and how to decide on a path forward when what to do next is unclear... We seek to <u>explicitly instruct students on the data-centric</u> <u>debugging strategies</u> employed when analyzing data by running sessions on debugging and how to proceed if one's code is not working.

Designing Data Science Workshops for Data-Intensive Environmental Science Research

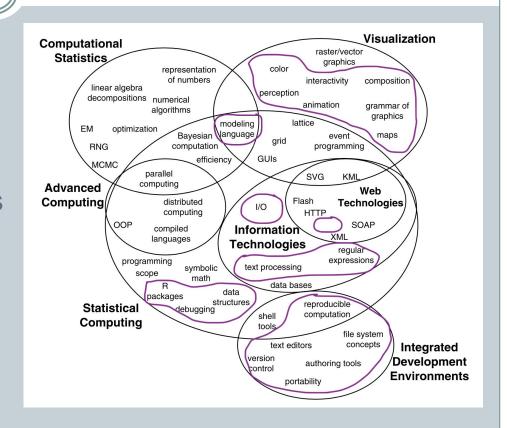
Theobold, Hancock, Mannheimer

The skills necessary for students to engage in [the data analysis] cycle may include general programming concepts such as <u>looping</u>, <u>user-defined functions</u>, <u>or conditional statements</u>.

Case study of an introductory data science course, designed for undergraduates

Mine Çetinkaya-Rundel & Victoria Ellison (2020) A Fresh Look at Introductory Data Science, Journal of Statistics Education, <u>DOI: 10.1080/10691898.2020.1804497</u>

We tackled the "what is data science?" question empirically by surveying contents of data science courses


Table 1. Summary of programming languages used in each course and the estimated breakdown of percent of class time spent on various course components.

	Duke	Berkeley	Cambridge	Smith	Stanford
Programming language	R	Python	Pseudocode	R, SQL	R
Data visualization	15%	5%	0%	32%	10%
Data wrangling	10%	15%	0%	36%	0%
Other EDA	10%	5%	0%	12%	10%
Inference	20%	30%	25%	0%	50%
Modeling	25%	20%	35%	0%	20%
Programming principles	10%	10%	0%	5%	0%
Mathematical foundations/theory	5%	5%	35%	0%	0%
Communication	5%	5%	0%	10%	10%
Ethics	0%	5%	5%	5%	0%

For each unit:

- Learning goals
 - + justification, based on literature, for why we chose those particular learning goals
- Case study examples
- Pacing of topics

All materials are open source (datasciencebox.org)

We also describe

- Pedagogical choices
- Computing infrastructure
- Computing competencies students acquire
- Assessment
- Impact of course on undergraduate curriculum

Why "fresh"?

- Introduction to programming via visualisation
- Modern computing in R (tidyverse and more)
- Reproducible workflows from day one
- Focus on skills around the data science life cycle
- Modeling over inference
- Built-in flexibility for evolution of topics
- Emphasis on collaborative work

Computing in the graduate curriculum

- What should computing look like in the graduate statistics curriculum?
- We (Reinhart & Genovese) argue that statisticians are often called on to deliver statistical products, not analyses
- This requires a mastery of software engineering principles, not just the syntax of R or Python
- Topics, notes at https://36-750.github.io/

Computing in the graduate curriculum

- We describe a computing course for first-semester
 PhD and MS students in statistics & data science
- Goal: Give them experience designing and maintaining complex software
- Feedback through revision and mastery grading process
- Content covers design, unit testing, object-oriented and functional programming, databases...

Back to the Nolan and Temple Lang questions

- 1. When they graduate, what ought our students be able to do computationally, and are we preparing them adequately in this regard?
- 2. Do we provide students the essential skills needed to engage in statistical problem solving and keep abreast of new technologies as they evolve?
- 3. Do our students build the confidence needed to overcome computational challenges to, for example, reliably design and run a synthetic experiment or carry out a comprehensive data analysis?
- 4. Overall, are we doing a good job preparing students who are ready to engage in and succeed at statistical inquiry?