IDENTIFYING STATISTICAL CONCEPTS ASSOCIATED WITH HIGH AND LOW SELF-EFFICACY TO TEACH STATISTICS:

USING THE SETS INSTRUMENT WITH PRE-SERVICE MIDDLE GRADES TEACHERS

Leigh M. Harrell-Williams, University of Memphis M. Alejandra Sorto, Texas State University Rebecca L. Pierce, Ball State University Lawrence M. Lesser, The University of Texas at El Paso T. J. Murphy, Northern Kentucky University

CONTINUING THE FUN FROM YESTERDAY'S WORLD STATISTICS DAY

https://worldstatisticsday.org/

Leigh M. Harrell-Williams University of Memphis

THE RESEARCH TEAM

Supported in part by CAUSE (under NSF DUE #0618790)

M. Alejandra Sorto Texas State University

Rebecca L. Pierce Ball State University

Lawrence M. Lesser The University of Texas at El Paso

Teri J. Murphy Northern Kentucky University

Self-Efficacy, Attitudes, and Beliefs

Teacher efficacy affects

- teacher motivation
- willingness to use more innovative techniques
- student achievement
- time spent teaching certain concepts
- (Czerniak, 1990; Riggs & Enochs, 1990; Wenta, 2000).

Existing Instruments Measured

- attitude towards statistics (SATS, ATS)
- efficacy for learning/doing statistics (CSSE, SELS)
- statistical knowledge (SCI, CAOS)
- statistics anxiety (STARS)

SETS DEVELOPMENT PROCESS

Identified representative behaviors from GAISE and state standards items Draft items created for instrument using language aligned with GAISE and state standards Revised item wording based on input from practicing elementary & middle school teachers

MIDDLE GRADES SETS INSTRUMENT

26 items in this format:

Please rate your confidence in teaching middle grades students the skills necessary to complete the following tasks successfully:

Scale of I "Not at all confident" to 6 "Completely confident"

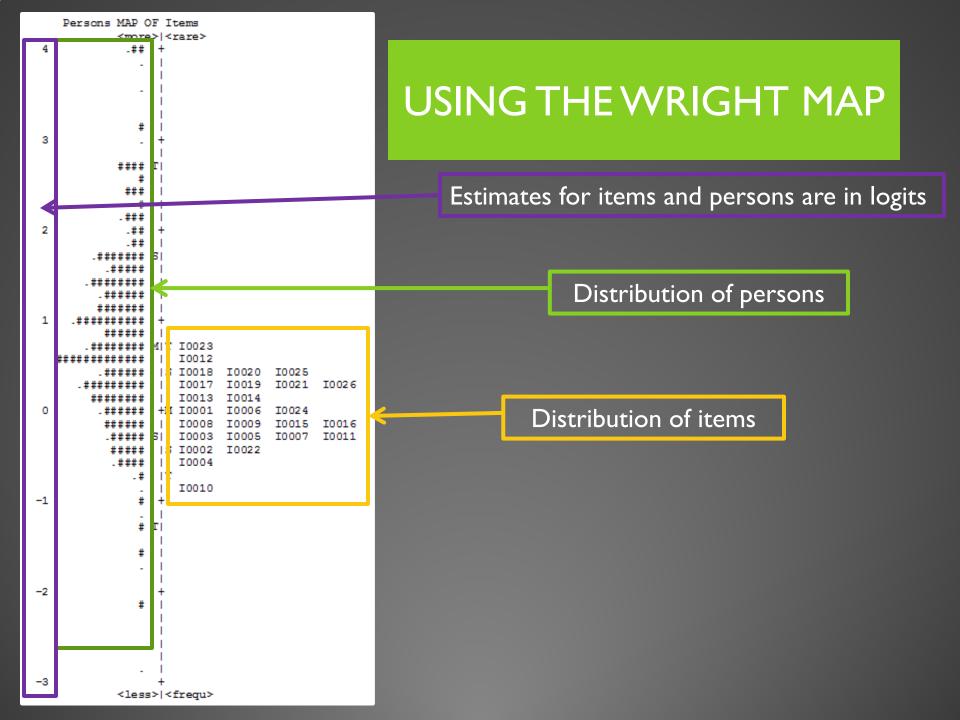
MIDDLE GRADES SETS INSTRUMENT

Appendix - All Items on the Middle Grades SETS Instrument

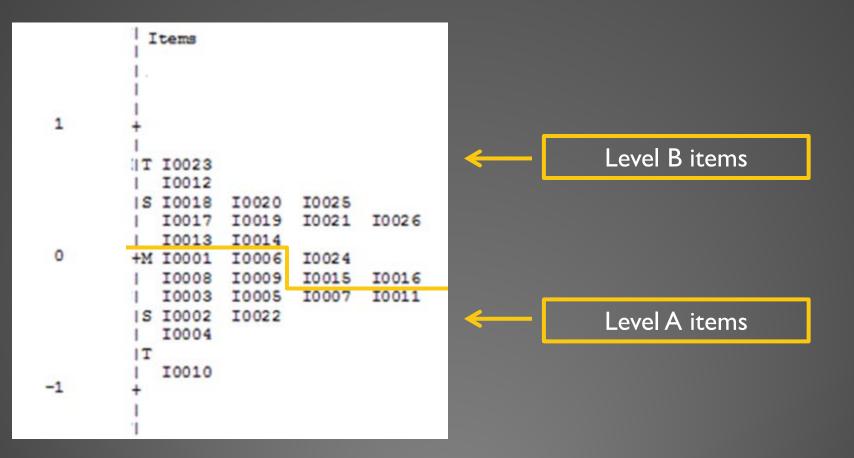
The instrument below uses the two-factor structure presented in <u>Harrell-Williams et al. (2014)</u>. Applying the language of <u>Friel, Curcio, and Bright (2001)</u>, the two-factor structure in the column headings represents levels A and B, respectively, of the preK-12 GAISE (<u>Franklin et al.</u> 2007). Readers interested in using the SETS instrument should contact the authors.

Factor 1 Items:	Factor 2 Items:						
"Reading the Data"	"Reading Between the Data"						
 Collect data to answer a posed statistical 	12. Distinguish between a question based on data						
question in contexts of interest to middle school	that vary and a question based on a deterministic						
students.	model (for example, specific values of rate and						
	time determines a particular value for distance in						
	the model						
	$d = r \times t$).						
2. Recognize that there will be natural variability	Identify what variables to measure and how						
between observations for individuals.	to measure them in order to address the question posed.						
Select appropriate graphical displays and	14. Describe numerically the variability between						
numerical summaries to compare individuals to each other and an individual to a group.	individuals within the same group.						
4. Create dotplot, stem and leaf plot, and tables	15. Create histograms for summarizing						
(using counts) for summarizing distributions.	distributions.						
5. Use dotplot, stem and leaf plot, and tables	16. Use histograms for comparing distributions.						
(using counts) for describing distributions.							
6. Create boxplots for <i>summarizing</i> distributions.	17. Compute interquartile range and five-number summaries for summarizing distributions.						
7. Use boxplots, median, and range for describing	18. Use interquartile range, five-number						
distributions.	summaries, and boxplots for comparing						
	distributions.						
Identify the association between two variables	19. Recognize the role of sampling error when						
from scatterplots.	making conclusions based on a random sample						
	taken from a population.						

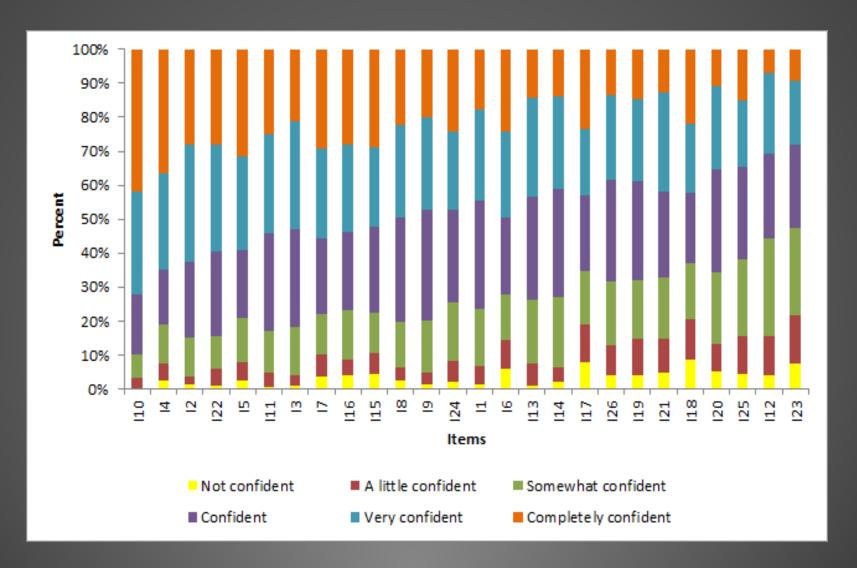
SETS DEVELOPMENT PROCESS (CONT.)


2010 - 2011 Data Collection Study for Validation Purposes

2012


Analysis of Data for Psychometric Properties of Instrument 2013

Evaluation of "Easiest" and "Hardest" Items


WHAT INFORMATION CAN WE LEARN FROMTHE DATA?

FOCUS ON ITEMS

RESPONSES FOR EACH CATEGORY BY ITEM

ITEMS WITH HIGHEST EFFICACY RATINGS

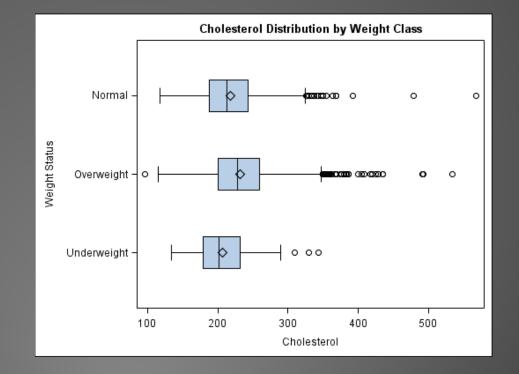
ltem #	Difficulty Estimate	S.E.	Item Description
5	-0.34	0.06	Use dotplot, stem and leaf plot, and tables (using counts) for describing distributions.
22	-0.41	0.06	Recognize that a sample may or may not be representative of a larger population.
2	-0.48	0.06	Recognize that there will be natural variability between observations for individuals.
4	-0.50	0.07	Create dotplot, stem and leaf plot, and tables (using counts) for summarizing distributions.
10	-0.90	0.07	Recognize that statistical results may be different in another class or group.

ITEMS WITH LOWEST EFFICACY RATINGS

ltem #	Difficulty Estimate	S.E.	Item Description
23	0.74	0.06	Interpret measures of association.
12	0.61	0.06	Distinguish between a question based on data that vary and a question based on a deterministic model.
25	0.43	0.06	Distinguish between "association" and "cause and effect."
20	0.41	0.06	Describe numerically the strength of association between two variables using linear models.
18	0.36	0.06	Use interquartile range, five-number summaries, and boxplots for comparing distributions.
21	0.31	0.06	Explain the differences between two or more groups with respect to center, variability, and shape.

SUMMARY OF TRENDS

Statistical topics where PSTs report feeling more efficacious:


- generalizability of results
- variability among results (2 items)
- creating and using graphs and/or tables to summarize a distribution of univariate data (2 items)

Name								_	_		_	
	Bar Graph											
Which Shape is	15						1	N			_	
{ Your Favorite?	14											
	13											
	12									\leq		
Tally Chart										\geq		10
	10							D		\geq	4	0-
square trapezoid triangle hexagon	9							Pre	\leq	15		
	8								5	\geq	\geq	
	7							\geq	\geq	\leq	\leq	
My data shows that	6							\leq	\geq	\geq	\leq	
	5							\geq	\geq	<	\geq	Y
	4							\leq	\leq	\triangleleft		
	3							\leq	\leq	\leq	\leq	
	2											
	1											-
		square	trapezoid	triangle	hexa <i>g</i> on							
©2012 Debbie Candau			۵	raphics by De	bbie Candau					_	_	

Statistical topics where PSTs report feeling less efficacious:

- question generation
- association (2 items)
- group comparisons (3 items)

ONGOING WORK

Validation study for High School SETS instrument

Investigation of why PSTs feel more/less confident about teaching certain statistical topics

TO GET SETS

Email Rebecca Pierce rpierce@bsu.edu

SETS REFERENCES

Harrell-Williams, L.M., Sorto, M.A., Pierce, R.L., Lesser, L.M., & Murphy, T.J. (2015). Identifying statistical concepts associated with high and low levels of self-efficacy to teach statistics in middle grades. *Journal of Statistics Education*, 23(1), 1–20.

Harrell-Williams, L.M., Sorto, M.A., Pierce, R.L., Lesser, L.M., & Murphy, T.J. (2014). Validation of scores from a measure of teachers' selfefficacy to teach middle grades statistics. *Journal of Psychoeducational Assessment.*, 32(1), 40–50.

SETS REFERENCES

Harrell-Williams, L.M., Sorto, M.A., Pierce, R.L., Lesser, L., & Murphy, T.J. (August 2012). Measuring confidence to teach statistics to middle and high school grades: The development and validation of the SETS instruments. Webinar for Consortium for the Advancement of Undergraduate Statistics Education (CAUSE).

Harrell, L.M., Pierce, R.L., Sorto, M.A., Murphy, T.J., Lesser, L.M., & Enders, F.B. (2009). On the importance and measurement of preservice teachers' efficacy to teach statistics: Results and lessons learned from the development and testing of a GAISE-based instrument. *Proceedings of the 2009 Joint Statistical Meetings, Section on Statistical Education*. Alexandria, VA: American Statistical Association.