Bayes Goes to Bat

Jo Hardin Associate Professor of Mathematics Pomona College jo.hardin@pomona.edu

July 28, 2009

Bayes Baseball

・ロン ・四と ・日と ・日と

Acknowledgement

This activity is taken directly from John Spurrier's book *The Practice of Statistics: putting the pieces together*

Bayes Baseball

- < ∃ >

Appropriate Courses

- stat theory
- introduction to statistics
- modeling course
- statistical computing

・ロト ・回ト ・ヨト

< ≣ >

Student Background

- estimation (Bayesian & frequentist)
- bias, variance, mean squared error
- priors
- beta distribution

▲□→ < □→</p>

- < ≣ →

Learning Goals

- 1. For the students to get an idea of how priors are set.
- 2. To demonstrate how Bayesian and frequentist estimators can be compared.
- 3. To reinforce the ideas of bias and variability of an estimator.

▲ 同 ▶ | ▲ 臣 ▶

< ≣ >

Activity Background

- Goal: to estimate the true batting average (BA) in the major leagues for a high school player (that is, *parameter estimation*)
- Spurrier gives some basic info about BAs (best BA ever is Ty Cobb with 0.366, good BA is 0.3, barely adequate BA is 0.2)
- The baseball player gets 10 at bats. We can either use the frequentist estimate or we can incorporate our prior knowledge.

A (1) > A (1) > A

Frequentist Estimation

 $X \sim Bin(n = number of at bats, \theta = P(getting a base hit))$

$$\theta_f = \frac{X}{n}$$

$$E[heta_f] = heta$$
 $Var[heta_f] = rac{ heta(1- heta)}{n}$

Bayes Baseball

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Bayesian Estimation

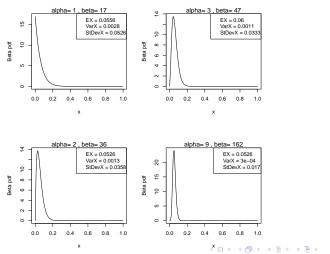
$$X \sim Bin(n = number of at bats, \theta = P(getting a base hit))$$

 $\theta \sim beta(\alpha, \beta)$

$$\theta_B = \frac{X + \alpha}{n + \alpha + \beta}$$

$$E[\theta_B] = \frac{n\theta + \alpha}{n + \alpha + \beta}$$
 $Var[\theta_B] = \frac{n\theta(1-\theta)}{(n + \alpha + \beta)^2}$

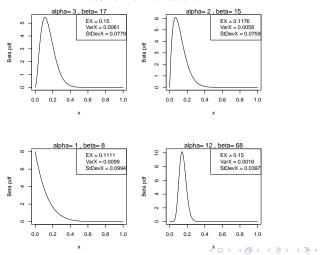
<ロ> (四) (四) (三) (三) (三) (三)


Personal Correspondence with John Spurrier:

- The Bayes estimator has an interesting interpretation.
- It is the usual batting average (sample proportion) with
 - $\alpha + \beta$ imaginary extra at bats
 - yielding α imaginary hits added to the data.

$$\theta_B = \frac{X + \alpha}{n + \alpha + \beta}$$

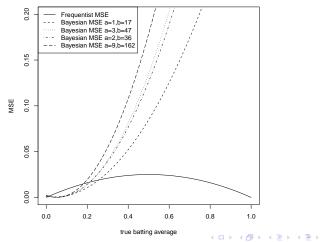
 I sense that many major league managers are Bayesians without knowing what that means.


Priors

Possible Prior Distributions

Bayes Baseball

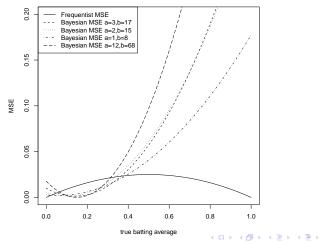
Priors



Possible Prior Distributions

Bayes Baseball

Evaluating


MSE for different estimators of batting average

Bayes Baseball

Evaluating

MSE for different estimators of batting average

Bayes Baseball

Theoretical Extensions

- Deriving expected value, variance, MSE
- MLE of θ , MOM of θ
- Minimum Variance Unbiased Estimator (θ_f)
- θ_B is a weighted average of the prior expected value and θ_f

A⊒ ▶ ∢ ∃

Computational Aspects

- Figuring out the prior on their own
- Computing MSE as a function of different values (true θ, α, β, n = sample size)

・ロト ・回ト ・ヨト

æ

- ∢ ≣ ▶

Things that go well

- The students see the process of creating a prior (no more black box)
- > You can continue to refer to the example when discussing
 - different distributions / priors
 - Bayesian hypothesis testing
 - Bayesian posterior intervals
- The students love this activity!

A⊒ ▶ ∢ ∃

Difficulties

- MSE is sort of apples and oranges
- Hard to find time to teach both theory and computation
- Not all students are familiar with baseball

æ

< ≣ >

Image: A □ > A

Thanks

- John Spurrier great book!
- CAUSE for this webinar

・ロ・ ・ 日・ ・ 日・ ・ 日・