







#### **Dr. Bethany White**

Associate Professor, Teaching Stream Department of Statistical Sciences, University of Toronto

**Dr. Jasty Singh** Assistant Professor, Teaching Stream Department of Immunology, University of Toronto

**United States Conference on Teaching Statistics** 

Immunology UNIVERSITY OF TORONTO

## **Course Beginnings**



Statistician

Identifies/explains sources of error in research design & data analysis

Promotes good statistical practice



Adapted from: Wild & Pfannkuch (1999) & MacKay & Oldford (2000)



**Department of Statistical Sciences** 

Human Biology UNIVERSITY OF TORONTO Immunology UNIVERSITY OF TORONTO



#### Immunology UNIVERSITY OF TORONTO

# We had to confront statistical errors in research repeatedly during the course!

### Prevalent Statistical errors in research

- Widespread misuse and misinterpretation of statistics, especially in the life sciences. (*Weissgerber et al. 2016*)
- Error rates of 38%+ have been reported by many authors in recent decades. (*Allen 2015*)

### Why?

- "inappropriate reasoning about statistical ideas is widespread and persistent, similar at all age levels (even among some experienced researchers), and quite difficult to change" (Garfield & Ben-Zvi. 2007)
- Most "misuses of statistics are inadvertent and are from a lack of knowledge or planning" but some are deliberate to "achieve a desired statistical result." (*Thiese et al.* 2015)

#### Need for improved/more training

e.g Gardenier & Resnik 2002, Weissgerber et al. 2016, Baker 2016



## UNIVERSITY OF TORONTO FACULTY OF ARTS & SCIENCE

Human Biology UNIVERSITY OF TORONTO

Immunology UNIVERSITY OF TORONTO

# Selfefficacy

- **77%** of students more confident to *choose* correct statistical procedure at post
- **74%** of students more confident to *interpret* results at post



### Engaging with statistics in research

A neuroscience student volunteering in a lab classified rod terminals in the retina as either bipolar (+) or not bipolar (-). Using a total of six mice (three for each genotype, either "wild-type (+/+)" or "Pikachurin knock-out (-/-)"), this student examined whether the proportions of the two rod terminals differ between wild-type (+/+) and Pikachurin (i.e., a protein involved in photoreceptor formation) knock-out (-/-) mice.

What can we conclude from the student's Chi-Square ( $\chi^2$ ) test (Fig.1)?



Fig 1: Quantatative analysis of bipolar dendrites in the wild-type(+/+) and *Pikachurin*(-/-) mouse retina. 260 and 391 measurements were taken from the 3 mice in the wild-type and knock-out groups, respectively.  $\chi$ 2 Test; P-value<0.001

- a) Mice with the Pikachurin knock-out (-/-) tend to have a smaller proportion of bipolar terminus (+) than wild-type mice, so this proportion seems to depend on genotype.
- b) There is not a statistically significant difference in the proportions of bipolar terminus (+) for wild-type (+/+) and Pikachurin knock-out (-/-) mice, so the proportion does not seem to vary based on genotype.
- c) There is evidence against equality of the proportions of bipolar terminus (+) in wild-type (+/+) and Pikachurin knock-out (-/-) mice, suggesting this proportion differs based on genotype.
- We cannot conclude anything from this statistical test because the measurements are not independent.



e) I do not know





Immunology UNIVERSITY OF TORONTO

### Engaging with statistics in research







Immunology UNIVERSITY OF TORONTO

**Course Learning Outcome:** 

See the relevance of statistical issues in all stages of the life sciences research process.



UNIVERSITY OF TORONTO PACULTY OF ARTS & SCIENCE

**Department of Statistical Sciences** 

Human Biology UNIVERSITY OF TORONTO Immunology UNIVERSITY OF TORONTO



### Reported Likelihood of Actions (Post)

## Insights from our teaching experience & research...

- **Collaborative (multidisciplinary) teaching** makes for a richer, more authentic quantitative learning experience for students.
- The prevalence of statistical errors in life sciences research is alarmingly high.
- From study:
  - >Improvement in self-efficacy to choose correct statistical procedure and interpret results.
  - Many students still <u>not</u> able to recognize when standard methods not appropriate at end of course and do not all see the relevance of statistics to all stages of scientific inquiry process.
- One statistics course is not nearly enough! If we only have one to work with, the most important course-level learning outcome is that students "Recognize when standard statistical procedures are not appropriate and know to seek statistical expertise early in the research process."



Immunology UNIVERSITY OF TORONTO

### References

Allen, B (2015) "Healthy And Unhealthy Statistics: Examining The Impact Of Erroneous Statistical Analyses In Health-Related Research". *Electronic Thesis and Dissertation Repository, The University of Western Ontario.* 3119. Available online at <u>https://ir.lib.uwo.ca/etd/3119/</u>.

Baker, M (2016) "1,500 scientists lift the lid on reproducibility" Nature. 533, 452-454.

Bulmer, M and Haladyn, JK (2011) "Life on an Island: a Simulated Population to Support Student Projects in Statistics". *Technology Innovations in Statistics Education*, 5(1).

GAISE College Report ASA Revision Committee (2016) "Guidelines for Assessment and Instruction in Statistics Education College Report 2016". Available online at <u>https://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege\_Full.pdf</u>.

Gardenier, J and Resnik, D (2002) "The Misuse of Statistics: Concepts, Tools, and a Research Agenda". *Accountability in Research: Policies and Quality Assurance*, 9(2), 65-74.

Garfield, J & Ben-Zvi, D (2007) "How Students Learn Statistics Revisited: A Current Review of Research on Teaching and Learning Statistics" *International Statistical Review*. 75, 3, 372-396.

MacKay, R.J. & Oldford, W (2000). "Scientific Method, Statistical Method and the Speed of Light." *Statistical Science*. 15(3).

Thiese, MS, Zachary, CA, Walker, SD (2015) "The misuse and abuse of statistics in biomedical research" *Biochemia Medica*. 25(1), 5-11.

Weissgerber TL, Garovic VD, Milin-Lazovic JS, Winham SJ, Obradovic Z, Trzeciakowski JP, Milic, NM. (2016) "Reinventing Biostatistics Education for Basic Scientists". *PLoS Biol* 14(4): e1002430. doi:10.1371/journal.pbio.1002430.

Wild, C & Pfannkuch, M (1999) "Statistical Thinking in Empirical Enquiry" *International Statistical Review*, 67,3, 223-265.

