
Teaching Bootstrap Methods with R
Programming

Xuemao Zhang 
USCOTS 2021 

East Stroudsburg University



Overview

Why should the method of bootstrap be taught by
programming?

Bootstrap is a resampling method
Programming can help students solve complicated problems

Teaching Examples

A simulation study: Estimation of a single population mean
Estimating coefficients in simple linear regression models
Block bootstrap for time-series data



Bootstrap method

Bootstrap is a resampling method: drawing repeated
samples of size  with replacement from the original data
of size 

The bootstrap is a flexible and powerful statistical tool
that can be used to quantify the uncertainty associated
with a given estimator and is particularly good for getting
their:

standard errors
and confidence limits

The use of the term bootstrap derives from the phrase ,
widely thought to be based on one of the eighteenth
century “Surprising Adventures of Baron Munchausen”
by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. 
Just when it looked like all was lost, he thought to 
pick himself up by his own bootstraps.
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Bootstrap method

Treat the data of size  as a population (a proxy for the
true distribution).

And sample with replacement  times.

Each resample simulates the process of taking a sample
from the “true” distribution. Compute the statistic of
interest on each “re-sample”.

 constitutes an estimate of the distribution of .
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Bootstrap method
Idea: We want to find the confidence interval for a mean from
a sample of only 4 observations: 6, -3, 5, 3.

If the data are from a normal population, we use the general t-
interval to get a confidence interval of the population mean.

The first thing that bootstrapping does is estimate the
population distribution of  from the four observations in the
sample

In other words, the random variable  is defined:

6 0.25

-3 0.25

5 0.25

3 0.25

The mean of  is then simply the mean of the sample:

with population variance

Y

Y ∗

y∗ ( )p∗ y∗

Y ∗

( ) =∑ ( ) = 2.75 =E∗ Y ∗ y∗p∗ y∗ Y
¯ ¯¯̄

V a ( ) =∑( − 2.75 ( ) = 12.1875.r∗ Y ∗ y∗ )2p∗ y∗



Bootstrap method

We now treat the sample as if it were the population, and
resample from it

In this example we take all possible samples with
replacement, meaning that we take 
different samples

Since we found all possible samples, the mean of these
samples is simply the original mean

The variance of the sample means from these samples is:
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Bootstrap method

Some of the original data points will appear more than
once; others won’t appear at all.

For a sample of size 100, if we sample with replacement
100 times. In fact, there is a chance of

that any one of the original data points won’t appear at
all.

any data point is included with Prob .

We treat the original sample as the “true population”.

Each resample simulates the process of taking a sample
from the “true” distribution.

(1 − 1/100 ≈ 0.366)100

≈ 0.634



Estimation of a single population
mean

Sampling  data points from 

Bootstrap method to estimate 

100 N(μ = 50, σ = 10)

norm.data <- rnorm(100, mean=50, sd=10);

μ

set.seed(20);  
b.avg = c();  
sd.est=c();  
for(i in 1:100)  
{  
ystar=sample(norm.data,length(norm.data),replace=T);  
b.avg[i] = mean(ystar); 
sd.est[i]=sd(ystar); 
}



Estimation of a single population
mean

hist(b.avg)



Estimation of a single population
mean

By the sampling theory

## [1] 49.83196

## [1] 0.9564634

∼ N( = 50, = = 1)Y
¯ ¯¯̄

μ
Y¯ ¯¯̄ σ

Y¯ ¯¯̄
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mean(b.avg)

sd(b.avg)



Estimation of a single population
mean

Confidence Interval estimation

The first way is by the approximate normality assumption. For
example, a  confidence interval of  is

## [1] 47.95729 51.70663

The second is to use the percentiles of the bootstrap
histogram. A  confidence interval of  is

##     2.5%    97.5%  
## 48.23349 51.54375

95% μ

c(mean(b.avg)-1.96*sd(b.avg), mean(b.avg)+1.96*sd(b.avg));

95% μ

quantile(b.avg, c(0.025, 0.975)); 

hist(b.avg)



Estimation of a single population
mean

boot::boot()

Performing a bootstrap analysis in using the boot library.

First, we must create a function that computes the statistic of
interest for a bootstrap sample indicated by index.
Second, we use the boot() function, which is part of the boot
library, to perform the bootstrap by repeatedly sampling
observations from the data set with replacement.

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = norm.data, statistic = mean.fn, R = 100) 
##  
##  
## Bootstrap Statistics : 
##     original     bias    std. error 
## t1* 49.81992 -0.1306911    0.950393

mean.fn=function(data,index){  return(mean(data[index])); }  
library(boot);  
boot(norm.data, mean.fn, R=100);

#set.seed(1); 
#mean.fn(norm.data,sample(100,100,replace=T));



Estimating coefficients in simple
linear regression models

Consider the mtcars data set and use hp(horsepower) to
predict mpg.

plot(mpg~hp,data=mtcars)



Estimating coefficients in simple
linear regression models

We first create a simple function, boot.fn(), which takes in
the mtcars data set as well as a set of indices for the
observations, and returns the intercept and slope estimates for
the linear regression model.

## (Intercept)          hp  
## 30.09886054 -0.06822828

## (Intercept)          hp  
## 29.38901482 -0.06886018

boot.fn=function(data,index)  
 return(coef(lm(mpg~hp,data=data,subset=index)))

boot.fn(mtcars,1:32);

set.seed(1)  
boot.fn(mtcars,sample(32,32,replace=T));



Estimating coefficients in simple
linear regression models

Next, we use the boot() function to compute the standard
errors of 32 bootstrap estimates for the intercept and slope
terms.

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = mtcars, statistic = boot.fn, R = 32) 
##  
##  
## Bootstrap Statistics : 
##        original       bias    std. error 
## t1* 30.09886054  0.567331366   1.9896507 
## t2* -0.06822828 -0.004345474   0.0141649

Compare the bootstrap estimates with the general linear
regression model fit.

The standard errors might be under-estimated

##                Estimate Std. Error   t value     Pr(>|t|) 
## (Intercept) 30.09886054  1.6339210 18.421246 6.642736e-18 
## hp          -0.06822828  0.0101193 -6.742389 1.787835e-07

boot(mtcars,boot.fn,32);

summary(lm(mpg~hp,data=mtcars))$coef;



Estimating coefficients in simple
linear regression models

We also can consider the bootstrap method applied to
multiple linear regression model. For example, quadratic
regression model.

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = mtcars, statistic = boot.fn, R = 392) 
##  
##  
## Bootstrap Statistics : 
##          original        bias     std. error 
## t1* 40.4091172029  6.741016e-01 3.1844475707 
## t2* -0.2133082599 -1.080736e-02 0.0416863327 
## t3*  0.0004208156  3.731752e-05 0.0001221299

##                  Estimate   Std. Error   t value     Pr(>|t|) 
## (Intercept) 40.4091172029 2.740759e+00 14.743766 5.234398e-15 
## hp          -0.2133082599 3.488387e-02 -6.114812 1.162972e-06 
## I(hp^2)      0.0004208156 9.844453e-05  4.274647 1.889240e-04

boot.fn=function(data,index)  
{coefficients(lm(mpg~hp+I(hp^2),  
                 data=data,subset=index)) 
}  
set.seed(1); boot(mtcars,boot.fn,392)

summary(lm(mpg~hp+I(hp^2),data=mtcars))$coef;



Block bootstrap for time-series
data

Suppose there is a time series data set.

## [1] 1000    4

library(readr);  
Xy=read_csv("Xy.csv");  
dim(Xy);



Block bootstrap for time-series
data

If we consider the general bootstrap method for the simple
linear regression model.

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = Xy, statistic = boot.fn, R = 1000) 
##  
##  
## Bootstrap Statistics : 
##      original        bias    std. error 
## t1* 0.2658349 -1.770579e-05  0.01442441 
## t2* 0.1453263  9.210938e-04  0.02844693 
## t3* 0.3133670  1.750347e-03  0.03520836

boot.fn=function(data,index){  
return( coef(lm(y~X1+X2,data=data,subset=index)));  
}  
boot(Xy, boot.fn, R=1000) #bootstrap 1000 times  



Block bootstrap for time-series
data

Finally, use the block bootstrap to estimate . Use
blocks of 100 contiguous observations, and resample ten
whole blocks with replacement then paste them together to
construct each bootstrap time series. For example, one of
bootstrap resamples could be:

## [1] 1000    4

## # A tibble: 6 x 4 
##       t    X1     X2     y 
##   <dbl> <dbl>  <dbl> <dbl> 
## 1   101 0.327 0.0549  1.14 
## 2   102 0.359 0.0538  1.13 
## 3   103 0.390 0.0537  1.13 
## 4   104 0.420 0.0547  1.13 
## 5   105 0.450 0.0568  1.12 
## 6   106 0.478 0.0598  1.12

s. e. ( )β̂1

new.rows=c(101:200, 401:500, 101:200, 901:1000, 301:400,  
             1:100, 1:100, 801:900, 201:300, 701:800); 
new.Xy=Xy[new.rows, ];  
dim(new.Xy);

head(new.Xy);



Block bootstrap for time-series
data

Now let’s write the new bootstrap function.

newboot.fn=function(data, index){ 
  seq=sample(10,10,replace=T);#10 random blocks  
  newrows=integer();  
for (i in 1:10)  
 {  
newrows=c(newrows, sample(((seq[i]-1)*100+1):(seq[i]*100), 

100,replace=T) );  
}  
 index=newrows;  
 return( coef(lm(y~X1+X2,data=data,subset=index)) );  
}



Block bootstrap for time-series
data

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = Xy, statistic = newboot.fn, R = 1000) 
##  
##  
## Bootstrap Statistics : 
##      original     bias    std. error 
## t1* 0.2407740 0.03016918  0.09238234 
## t2* 0.1072043 0.04308182  0.20017263 
## t3* 0.3318433 0.06771230  0.32394562

##  
## ORDINARY NONPARAMETRIC BOOTSTRAP 
##  
##  
## Call: 
## boot(data = Xy, statistic = boot.fn, R = 1000) 
##  
##  
## Bootstrap Statistics : 
##      original        bias    std. error 
## t1* 0.2658349 -1.530411e-05  0.01451993 
## t2* 0.1453263 -9.370238e-04  0.02899532 
## t3* 0.3133670  2.112013e-05  0.03668959

boot(Xy, newboot.fn, R=1000);

boot(Xy, boot.fn, R=1000) #general bootstrap



Thank you!


