What's Changed in How My Students Find (and Think About) P-values

Robin Lock St. Lawrence University

USCOTS 2013 - Opening Session

A Historical Comparison

Traditional: p-value in the year 10 BC* vs. Modern: p-value today

Example: Beer and Mosquitoes Does consuming beer attract mosquitoes?

Experiment*:

- Volunteer were randomly assigned to drink a liter of either beer or water
- Mosquitoes were caught in traps as they approached the volunteers.

	n	mean	std. dev.
Beer	25	23.60	4.1
Water	18	19.22	3.7

*Lefvre, T., et. al., "Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes," *PLoS ONE*, 2010; 5(3): e9546.

Traditional p-value

1. Pick a formula

$$t = \frac{\bar{x}_B - \bar{x}_W}{\sqrt{\frac{s_B^2}{n_B} + \frac{s_W^2}{n_W}}}$$

2. Plug & Chug

$$t = \frac{23.6 - 19.22}{\sqrt{\frac{4.1^2}{25} + \frac{3.7^2}{18}}} = 3.68$$

3. Pick a reference distribution Where is my t-table?

0.0005 < p-value < 0.001

TABLE B: #-DISTRIBUTION CRITICAL VALUES

					Tu	il probabi	lity p			_		-
ďf	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.000
1	1,000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.
. 2	.816	1.061	1.386	1.886	2.920	4.303	4,849	6.965	9.925	14.09	22.33	31.6
3	.765	.978	1.250	1.638	2.353	3,182	3.482	4.541	5.841	7.453	10.21	12.9
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61
5	.727		1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86
6		.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5:04
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4,025	4.43
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3,930	4.31
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	- 4.14
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	600	265	1.071	1 3 3 7	1 746	2 120	2 225	2 692	2 021	2 252	2 686	4.01
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	.088	.502	1.007	1.330	1.734	2,101	2.214	2.552	2.878	3.197	3.611	्रम
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.85
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.81
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.79
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467.	3.74
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3,450	3.72
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.69
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2,462	2.756	3.038	3.396	3.65
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2:457	2.750	3.030	3.385	3.64
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.55
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3,49
60	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.46
80	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.41
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.39
1000	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.30
	624	9.42	1.626	1 292	26.45	1.0.00	2054	2.226	a. 100.0	0.000	0.001	A (949)

d.f.

t=3.68

Oops! I forgot to check conditions...

Sample sizes are both less than 30, is the t-distribution even appropriate?

What if the data are heavily skewed?

...and, by the way, how does this method connect to the definition of a p-value?

p-value

The **p-value** is the proportion of samples, when H_0 is true, that would give results as (or more) extreme as the original sample.

Simulation Approach

"when H_0 is true" \Rightarrow It doesn't matter whether the subject drank beer or water

Create randomization samples (under H_0) by randomly re-assigning the beer/water labels to the 43 mosquito counts.

Find the difference, $\bar{x}_B - \bar{x}_W$, for each sample.

Physical Simulation

- Put the 43 mosquito counts on cards.
- Shuffle and deal cards into two piles (25 beer and 18 water).
- Compute the difference in means.
- Repeat MANY times.

We Need Some Technology!

www.lock5stat.com/statkey

to accompany <u>Statistics: Unlocking the Power of Data</u>

by Lock, Lock, Lock, Lock, and Lock

Descriptive Statistics and G	raphs	Bootstrap C	Confidence Intervals		Randomization Hypothesis Tests			
One Quantitative Variable CI f		CI for Single	CI for Single Mean, Median, St.Dev.			Test for Single Mean		
One Categorical Variable		CI for Single Proportion			Test for Single Proportion			
One Quantitative and One Categorical Variable		CI for Diffe	rence In Means		Test for Difference in Means			
Two Categorical Variables CI for		CI for Diffe	CI for Difference In Proportions			Test for Difference In Proportions		
Two Quantitative Variables		CI for Slope, Correlation			Test for Slope, Correlation			
Sampling Distributions			Mean		Proportion			
Theoretical Distributions	Normal		t		χ ²	F		
More Advanced Randomization Tests	χ^2 Goodness-of-Fit χ^2		² Test for Association	ANOV/ in Mea	A for Difference ns	ANOVA for Regression		

"as extreme as the original sample"

Background Required

- Random shuffle
- Compute sample means
- Dotplot
- Find a proportion by counting

Questions?

- What about other parameters or different hypotheses?
- What about checking conditions?
- What about confidence intervals?
- What was that address for StatKey?

www.lock5stat.com/statkey

StatKey

to accompany Statistics: Unlocking the Power of Data

by Lock, Lock, Lock, Lock, and Lock

Descriptive Statistics and Gra	phs	Bootstrap Confidence Intervals			Randomization Hypothesis Tests		
One Quantitative Variable		CI for Single Mean, Median, St.Dev.			Test for Single Mean		
One Categorical Variable		CI for Single	Proportion		Test for Single Proportion		
One Quantitative and One Ca Variable	tegorical	CI for Difference In Means			Test for Difference in Means		
Two Categorical Variables		CI for Differ	rence In Proportions		Test for Difference In Proportions		
Two Quantitative Variables CI fo		CI for Slope, Correlation			Test for Slope, Correlation		
Sampling Distributions			Mean		Pr	oportion	
Theoretical Distributions	Normal		t		χ ²	F	

More Advanced Randomization Tests	χ^2 Goodness-of-Fit	χ^2 Test for Association	ANOVA for Difference in Means	ANOVA for Regression	
--------------------------------------	--------------------------	-------------------------------	----------------------------------	----------------------	--

