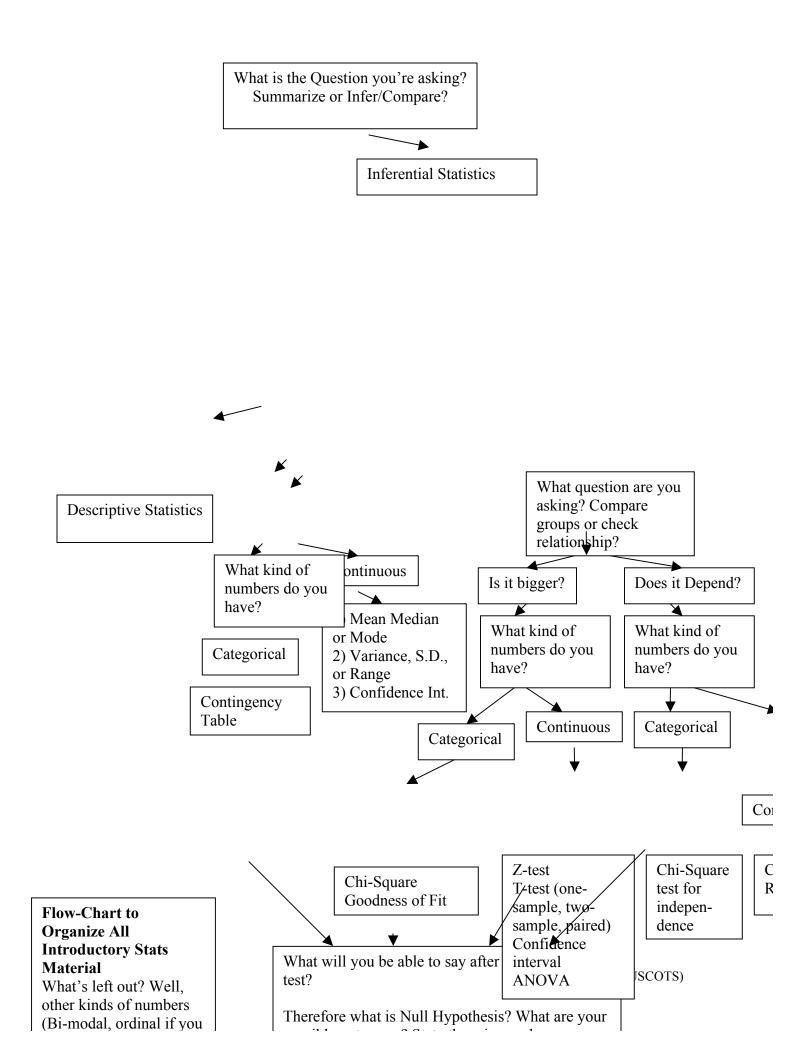
Seeing the forest through the trees: Overarching principles to help struggling students


Julie Turchin jmcg@psych.stanford.edu

In my experience the most important thing is to encourage students to talk through the whole problem without using a single number or equation, so they can say, for example: "We want to know if group A is bigger (significantly bigger) than group B. The numbers are interval or continuous, and there are different people in each group (they're independent) so we're going to use a t-test for independent samples, and if we get a big number (positive or negative) for t (and therefore a small number for p) that will mean that it's very unlikely that we got such different means by chance, so we will reject the hypothesis that nothing's going on (the groups are the same) and instead say that group A is in fact bigger than group B".

The above sentence incorporates 90% of what they need to have mastered. There are two sections—the part where the student decides which test to use (organization) and the part where they describe what they're testing and why. The nice thing is, *what* they're testing and *why* is 99% the same for all tests, so once they get those concepts, each test, while it requires different inputs, should be clear in its output.

Topic:	They Learn:	I emphasize:	Catch Phrase
Null hypothesis	Start to search problem	Figure out in words	"Nothing interesting
ivun nypomesis	for Null hypothesis—	what you want to	is going on"
	often confuse Null and	know first. Either one	or
	Alternative, or	is really bigger than	"What's the Boring
	conclude opposite of	the other, or it's	option?"
	what they've found	chance. Chance is the	option
	what they ve found	Null hypothesis.	
Tests for categorical	Lists of equations	Make it clear that they	"What kind of
and continuous	Students tackle each	are making the same	numbers are these?
numbers	equation separately,	steps, and coming to	numbers are these?
numbers	and soon they are	the same conclusions,	
	overwhelmed.	for, say, a Chi-Square	
	overwhenned.	and a regression, just	
		with different	
		numbers.	
All statistical tests	Lists of Equations	In introductory	"Is it Bigger? How
		statistics, all	much Bigger?"
		inferential statistics	00
		we teach cover	and
		basically two	"Are they related?
		questions: 1) Is there a	Does it depend?"
		mean difference	-
		between groups? 2)	
		Are two variables	
		related to each other?	

