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We are teaching a novel introductory statisties course that
introduces basic statistical concepts in the context of statisti-
cal modeling. We helieve this helps to inerease student moti-
vation, since students can ask complicated, realistic questions
of data. It also allows us to provide multivariate analysis tech-
niques that are increasingly demanded in client departments
such as economics and biology,

The course is built on some fundamental principles that
make statistical modeling accessible to introductory students:

1. Whenever possible, use geometry rather than algebra
for derivations. Almost all students have good geometry
skills, knowing about angles and lengths and shadows.
They all know the pythagorean theorem and understand
the geometry of right triangles. All we need to do is get
them to generalize these slkills to N dimensions.

2. Use simulation and resampling to construet sampling
distributions and confidence intervals. Who doesn't un-
derstand about shuffling a deck and dealing?

3. Use sophisticated computation routinely. What was a
supercomputer 20 vears ago is now available at the local
mall for $500, and sophisticated software such as R is
free.

The tools provided by an introductory statistics course are
not up to the complex questions that students need to answer
in fields such as economics, business, or biology. Introductory
statistics courses build an impressive theoretical structure to
answer a rather simple question: Are these two groups differ-
ent? Answering this question is important, but it is not the
only sort of question our students will need to address. They
will need to deal with multiple explanatory variahles.

We might use examples of Simpson’s paradox to show the
importance of considering more than one explanatory vari-
able, but conventionally we don't give students the tools to
deal with such sitnations: just a cantionary tale.

Challenging the Assumptions

At Macalester, we had a chance to challenge some of the as-
sumptions about introductory statistics students.
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First, we revised our introductory caleulus course so that it
covers functions of multiple variables, modeling coneepts, and
important ideas from linear algebra (projection, linear combi-
nations, suhspaces, ete.) This means that the students enter-
ing our new introductory statisties course all know about vee-
tors, how to compute angles between vectors, multi-variable
pelynomial models (out to quadratic order), and so on.

Second, we make available to every student sophisticated
compnting capahility. This isn’t so hard with computer prices
falling and computers widely available at home. With about
one-twentieth of what a vear’s college education costs, one can
nowadays buy a laptop computer and install on it free, but so-
phisticated statistical software such as R, We then teach every
student the basies of using such software: plotting, defining
variables, reading in data, defining a function.

With the computer in hand, we are then freed from the
need to teach students algorithms. Instead, we can focus on
the concepts behind the algorithms, so that students develop
the understanding that they need to reason about the statis-
tics rather than being forced to follow the caleulations.

Example 1: Multivariate Modeling

Our course has a very heavy emphasiz on modeling. Even
simple descriptive statistics such as the mean are presented
as a kind of model. We don’t distinguish between simple re-
gression and multiple regression: all of it is projection of the
vector of the response variable onto the subspace spanned by
the explanatory variable,

In a conventional introductory statistics course, one might
teach simple linear regression by having students draw a line
over a scatter plot and indicate the residnals. This is a good
exercise for our students too, but we also work through the
calculation in a vector-space formalism: plotting the response
and explanatory variables (for N = 2), finding the orthogonal
projection of the response variable onto the model subspace,
finding the residuals. These easy geometrical calenlations can
then be matched up to the computer’s ealeulations. It's also
feasible to do graphical caleulations with &V = 3. Once a stu-
dent sees how the projection works, and sees how the graph-
ical solution can be computed using dot products, ete., it's
easy for them to understand how the computer does things
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Figure 1. A graphical depiction of fitting the model M = (1,1
to the data D = {1,4). Fitting the model means finding the
multiplier @ to make the length of the residual vector I} — aM
as small as possible. This particular model corresponds to find-
ing the mean of the values in D). The fitted values, shown as a
light-colored vector, are a projection of the data vector onto the
model subspace. The residual vector connects the fitted values
to the response values,

Example 2: Confidence Intervals

Confidence intervals play a justifiably important role in in-
troductory statistics courses, They emphasize the variability
in measurements and how to quantify them; thev show why
it’s helpful to have large N. With the computer, it’s nat-
ural to teach about sampling distributions by using simula-
tion and resampling. No formulas are necessary. However,
some ceniral ideas — the width of the interval depends on
the confidence level, the dependence on N — can still easily
he expressed and mastered.

With the eonceptual apparatus supplied by resampling,
theoretical coneepts such as power can readily be approached
on a practical level. For example, suppose one has a data
set that hints at the relationship between two variables, but
without reaching statistical significance. If we take the data
set as reflecting our alternative hypothesis, it is a straight-
forward matter to resample from that data set, varying the
sample size as necessary to reach a desired p-value. At any
given sample size, the number of trials in which the p-value
is small enough indicates the power for that sample size.

Similarly, the sampling distribution under the null hypath-
esis can be generated by resampling an explanatory variable.

Example 3: ANOVA

Just about every student lmows the pythagorean theorem and
understands the geometry of right triangles. With that, and

CBUGKE

Www.causeweb.org

b

the notion of projections, it's straightforward to understand
analysis of variance. The computer allows students to do the
caleulations on large data sets, but students can do the basic
caleulations themselves with a ruler.

Here is the ANOVA report, using R software:

> gummary (aovi <{1,4) ~ c(1,1)-1))

Df 2um Sq Mean Sq F value Pr(>F)
1 12.5 12,5 2.7778 0.3440
1 5 4.5

ci{l, 1) 2.
Resziduals 4.
The sum of squares can be estimated graphically just by mea-
suring the length-squared of each wector. For example, the
length of the fitted model = ahout 23/32in. and the length
of the residual is 7/16in. Taking the square of the ratio of
lengths gives us the F value.

ANOVA becomes the basic training ground for hypothesis
testing. It is in many ways a more natural training ground
than, say, the z-test because it has a simple geometrical in-
terpretation. For example, in the graph below, I seek to know
whether the model veetor M is significantly associated with
the response vector D). The null hypothesis is that M is un-
related to D, that is, that M might be equally likely to point
in any direction relative to D, The p-value is the probahil-
ity that a randomly pointing vector would be more closely
aligned with [ than M is. This p-value is easily computed as
a ratio of angles,

Of eourse, the point isn't to replace standard regression
and ANOVA ecaleulations with graphies, but to develop an
intuition about the ealeulations so that students can success-
fully use them to reason about complex multi-variable rela-
tionships in the systems they are interested in studving,

Figure 2. The p-value is the probahility of a randomly point-
ing model vector falling closer to the response vector: that is,
anywhere in the two cones shown. The fraction of the circle
subtended by these cones is the p-value. In this case, since the
madel vector is (1, 1) we are effectively testing whether the mean
of D is non-zero; the ratio of angles is exactly the same as p-
value generated by a one-sample t-test or ANOVA. The angle #
is 31 degress, giving a p-value of 4 x 31/360 = 0.344,
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