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A quick initial survey!

Please click here or use the following QR code:

https://forms.gle/AWDgRuwTHW7YfLDZ9


Poisson regression at St. Olaf

▶ 2002-04: Not taught. Statistics concentration required Prob
Theory and Math Stat plus 2 electives.

▶ 2004-18: Taught as part of Advanced Statistical Modeling
(Stat 316). Concentration required Statistical Modeling (Stat
272) and 316 plus 2 electives.

▶ 2018-24: Still taught in Stat 316. Concentration renamed
“Statistics and Data Science” and required 272 and Intro to
Data Science plus 2 electives. Stat 316 now counts as an
upper level elective.

▶ 2024-now: Still taught in Stat 316. Concentration became a
major. Stat 316 counts as a “Level 3 Stats Depth” elective
course.



Advanced Statistical Modeling at St. Olaf

▶ Covers generalized linear models (Poisson regr, binomial regr,
negative binomial regr, zero-inflated models, hurdle models,
etc.) and multilevel modeling

▶ Prerequsites: Intro Stats and Stat Modeling (nothing else –
calculus, linear algebra, computing, …)

▶ Applied focus using R
▶ Uses Beyond Multiple Linear Regression: Applied Generalized

Linear Models and Multilevel Models in R by Roback and
Legler. Second edition by Roback, Boehm Vock, and Legler
expected by Fall 2026.

https://bookdown.org/roback/bookdown-BeyondMLR/
https://bookdown.org/roback/bookdown-BeyondMLR/


Initial survey results



First case study: Philippine households

▶ Data is subset from 2015 Philippine Statistics Authority’s
Family Income and Expenditure Survey (FIES)

▶ International agencies often use household size to determine
the magnitude of the household needs

▶ Want to discern factors associated with larger households
▶ We will model both the total household size and number of

children under 5
▶ Our reponse variables are counts, which can make linear

regression problematic



Philippine household data
Key variables:

▶ location = region (Central
Luzon, Davao, Ilocos, Metro
Manila, or Visayas)

▶ age = the age of the head
of household

▶ total = the number of
people in the household
other than the head

▶ numLT5 = the number in
the household under 5 years
of age

▶ roof = the type of roof
(stronger material can be
used as a proxy for greater
wealth)



What is the Poisson distribution?

𝑃(𝑌𝑖 = 𝑦𝑖) = 𝑒−𝜆𝜆𝑦𝑖

𝑦𝑖!
for 𝑦𝑖 = 0, 1, … , ∞,

Note that both 𝐸(𝑌𝑖) = 𝜆𝑖 and 𝑉 𝑎𝑟(𝑌𝑖) = 𝜆𝑖.
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Figure 1: Poisson distributions with 𝜆 = 0.5, 1, and 5.



What is a Poisson regression model?

𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖

where the observed values 𝑌𝑖 ∼ Poisson with 𝜆 = 𝜆𝑖 for a given 𝑥𝑖.
Poisson model conditions:

1. Poisson Response The response variable is a count per unit
of time or space, described by a Poisson distribution.

2. Independence The observations must be independent of one
another.

3. Mean=Variance By definition, the mean of a Poisson
random variable must be equal to its variance.

4. Linearity The log of the mean rate, log(𝜆), must be a linear
function of x.



Poisson regression conditions: A graphical look
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Figure 2: Comparison of regression models.

Pause to Ponder

With your neighbor(s), compare the Poisson regression conditions
to the usual LINE conditions in linear regression. List similarities
and differences. What implications might the differences have for
modeling and checking conditions?



Side by side comparison

Linear Regression Poisson Regression
𝑌 ∼ 𝑁(𝜇, 𝜎) 𝑌 ∼ 𝑃𝑜𝑖𝑠(𝜆)
𝜇 = 𝛽0 + 𝑋𝛽1 𝑙𝑜𝑔(𝜆) = 𝛽0 + 𝑋𝛽1
Linear relationship of X and Y Log linear relationship of X and

E(Y)
Independent observations Independent observations
Normally distributed residuals Poisson distributed Y
Equal variance of all residuals Variance increases with E(Y)

(Var(Y) = E(Y))



Exploratory data analysis 1: Number under 5 in household
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(a) Distribution of number of children
under 5 in households across all 5
Philippine regions.
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(b) The log of the mean number of
children under 5 by age of the head of
household, with loess smoother.

Figure 3: EDA: selected plots



Initial model

𝑙𝑜𝑔(�̂�) = 0.525 − 0.029age

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.52550316 0.149021042 3.526369 4.212997e-04
## age -0.02938696 0.003052136 -9.628326 6.071065e-22

Pause to Ponder: How would you want your students to interpret
coefficient estimates above?



Interpreting model coefficients
If your students have interpreted coefficients with a
log-transformed response in linear regression, or log odds in logistic
regression, this is similar.
Consider how the estimated mean number in the house, 𝜆, changes
as the age of the household head increases by an additional year.

𝑙𝑜𝑔(𝜆𝑋) = 𝛽0 + 𝛽1𝑋
𝑙𝑜𝑔(𝜆𝑋+1) = 𝛽0 + 𝛽1(𝑋 + 1)

𝑙𝑜𝑔(𝜆𝑋+1) − 𝑙𝑜𝑔(𝜆𝑋) = 𝛽1

𝑙𝑜𝑔 (𝜆𝑋+1
𝜆𝑋

) = 𝛽1

𝜆𝑋+1
𝜆𝑋

= 𝑒𝛽1

(1)

These results suggest that by exponentiating the coefficient on age
we obtain the multiplicative factor by which the mean count
changes.



Interpreting model coefficients (continued)

In this case, the mean number of children under 5 changes by a
factor of 𝑒−0.029 = 0.971 or decreases by 2.9% (since
1 − .971 = .029) with each additional year older the household
head is;
Or, we predict a 3.0% increase in mean number of children less
than 5 for a 1-year decrease in age of the household head (since
1/.971 = 1.0298).
The quantity on the left-hand side of Equation 1 is referred to as a
rate ratio or relative risk, and it represents a percent change in
the response for a unit change in X.



Multiple Poisson regression

Most significant ideas from multiple linear regression are reinforced
by Poisson regression:

▶ hypothesis testing
▶ confidence intervals
▶ indicator variables
▶ categorical variables (reference level / Tukey HSD)
▶ squared terms
▶ interaction terms
▶ control for / adjusting for / holding constant
▶ checking violations of model conditions
▶ maximum likelihood estimates (equals least squares in linear

regr)



Exploratory data analysis 2: Total in household
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(a) Distribution of household size by
Philippine regions.
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Figure 4: EDA: selected plots

Pause to Ponder

How would the plots above inform your modeling?



Potential final model
modela2L <- glm(total ~ age + age2 + location, family = poisson, data = fHH1)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3843337714 1.820919e-01 -2.1106581 3.480171e-02
## age 0.0703628330 6.905067e-03 10.1900292 2.196983e-24
## age2 -0.0007025856 6.420019e-05 -10.9436677 7.125764e-28
## locationMetroManila 0.0544800704 4.720116e-02 1.1542104 2.484139e-01
## locationDavaoRegion -0.0193872310 5.378273e-02 -0.3604732 7.184933e-01
## locationVisayas 0.1121091959 4.174960e-02 2.6852758 7.246998e-03
## locationIlocosRegion 0.0609819668 5.265981e-02 1.1580362 2.468493e-01

For example, ̂𝛽5 = 0.112 indicates that, after controlling for the age of
the head of household, the log mean household size is 0.112 higher for
households in the Visayas Region than for households in the reference
location of Central Luzon.
In more interpretable terms, mean household size is 𝑒0.112 = 1.12 times
higher (i.e., 12% higher) in the Visayas Region than in Central Luzon,
when holding age constant.

Maximum estimated additional number in the house occurs when the
head of the household is around 50 years old, after adjusting for location.



Potential final model (continued)

To test for the effect of location, use a drop-in-deviance test
(analogous to an extra-sum-of-squares F test in linear regression):

## ResidDF ResidDev Deviance Df pval
## 1 1497 2200.944 NA NA NA
## 2 1493 2187.800 13.14369 4 0.01059463

Adding the four terms corresponding to location to the quadratic
model with age produces a statistically significant improvement
(𝜒2 = 13.144, 𝑑𝑓 = 4, 𝑝 = 0.0106), so there is significant evidence
that mean household size differs by location, after controlling for
age of the head of household.



Comparing non-nested models

Which is the single best predictor? quadratic age, roof type, or
location/region?
Use Akaike Information Criterion (AIC) to compare!

▶ lower values are better
▶ differences of 10 are “big”
▶ measures model fit while accounting for complexity, analog to

adjusted 𝑅2

df AIC
modela2 3 6579.823
model_roof 2 6739.269
model_location 5 6727.765



Lack of fit!

When a model is true, we can expect the residual deviance to be
distributed as a 𝜒2 random variable with degrees of freedom equal
to the model’s residual degrees of freedom.
Our final model has a residual deviance of 2187.8 with 1493 df.
The probability of observing a deviance this large if the model fits is
essentially 0, saying that there is significant evidence of lack-of-fit.
There are several reasons why lack-of-fit may be observed:

▶ We may be missing important covariates or interactions.
▶ There may be extreme observations that cause the deviance

to be larger than expected.
▶ There may be a problem with the Poisson model. In

particular, the Poisson model has only a single parameter, 𝜆,
for each combination of the levels of the predictors which
must describe both the mean and the variance.



Overdispersion
Often in Poisson models the variances in the response are larger
than the corresponding means at different levels of the predictors.
The response is then considered to be overdispersed.
Recall that we observed this in our EDA plot by region:
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Figure 5: Distribution of household size by Philippine regions.



Quasi-Poisson models

Without adjusting for overdispersion, we use incorrect, artificially
small standard errors leading to artificially small p-values for model
coefficients.
The simplest way to take overdispersion into account is to use an
estimated dispersion factor to inflate standard errors.

̂𝜙 = ∑(Pearson residuals)2

𝑛−𝑝 where 𝑝 is the number of model
parameters.

𝑆𝐸𝑄( ̂𝛽) = √ ̂𝜙 ∗ 𝑆𝐸( ̂𝛽)



Quasi-Poisson models (continued)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3843337714 0.2166025174 -1.7743735 7.620514e-02
## age 0.0703628330 0.0082137357 8.5664837 2.616622e-17
## age2 -0.0007025856 0.0000763676 -9.2000473 1.168513e-19
## locationMetroManila 0.0544800704 0.0561468673 0.9703136 3.320474e-01
## locationDavaoRegion -0.0193872310 0.0639757901 -0.3030401 7.619015e-01
## locationVisayas 0.1121091959 0.0496621109 2.2574392 2.412461e-02
## locationIlocosRegion 0.0609819668 0.0626400545 0.9735299 3.304477e-01

## Residual deviance = 2187.8 on 1493 df
## Dispersion parameter = 1.414965

In the absence of overdispersion, we expect the dispersion
parameter estimate to be 1.0. The estimated dispersion parameter
here is larger than 1.0 (1.415).
For example, the standard error for the Visayas region term from a
likelihood based approach is 0.0417, whereas the quasi-likelihood
standard error is

√
1.415 ∗ 0.0417 or 0.0497. This term is still

statistically significant at the 0.05 level under the quasi-Poisson
model, but the evidence is not as strong (quasi-Poisson p-value of
.024 vs. Poisson p-value of .007).
Furthermore, tests for individual parameters are now based on the
t-distribution rather than a standard normal distribution, with test
statistic 𝑡 = ̂𝛽

𝑆𝐸𝑄( ̂𝛽) following an (approximate) t-distribution with
𝑛 − 𝑝 degrees of freedom if the null hypothesis is true
(𝐻𝑂 ∶ 𝛽 = 0).
Drop-in-deviance tests can be similarly adjusted for overdispersion
in the quasi-Poisson model. 𝐹 = drop in deviance

difference in df / ̂𝜙 follows an
(approximate) F-distribution when the null hypothesis is true (𝐻0:
reduced model sufficient).



Quasi-Poisson models (continued)

We can take another look at our final model:

## ResidDF ResidDev F Df pval
## 1 1497 2200.944 NA NA NA
## 2 1493 2187.800 2.322264 4 0.05477322

Here, after adjusting for overdispersion, we find that there is not
statistically significant evidence at the 0.05 level
(𝐹 = 2.32, 𝑝 = .055) that mean household size differs among
regions after adjusting for age.



Alternative methods for modeling overdispersion
Diagnostic plot for overdisperion: plot mean vs. variance for groups
of households based on predicted size

▶ linear with slope > 1 => quasi-Poisson
▶ quadratic with incr. slope => negative binomial
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(a) Linear fit
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(b) Loess smoother

Figure 6: Mean and variance of predicted household sizes.



Negative Binomial models

A negative binomial model introduces another parameter in
addition to 𝜆, which gives the model more flexibility and, as
opposed to the quasi-Poisson model, the negative binomial model
assumes an explicit likelihood model.
Mathematically, you can think of the negative binomial model as a
Poisson model where 𝜆 is also random, following a gamma
distribution.
These results are very similar to the quasi-Poisson model in terms
of estimated coefficients (which can change), standard errors, test
statistics, and p-values.



Pause to Ponder

Check in with your neighbor(s). What questions do you have at
this point? What can we clarify or discuss more fully?



Second case study: Bald eagles

Every year in late December, since 1921, birdwatchers in the
Hamilton area of Ontario, Canada, have counted and recorded all
the birds they see or hear in a day.
The data was made available by the Bird Studies Canada website
and distributed through the R for Data Science TidyTuesday
project.
We are particularly interested in how the Bald Eagle population
has changed over time.

https://www.birdscanada.org/


Bald eagle data

Each row of bald_eagles.csv
contains information about bald eagles
counts in Hamilton, Ontario, for one
year. There are 37 rows covering 1981
through 2017. The variables include:

▶ year = year of data collection
▶ count = number of birds observed
▶ hours = total person-hours of

observation period
▶ count_per_hour = count divided

by hours
▶ count_per_week =

count_per_hour multiplied by 168
hours per week

Credit: © Ron Niebrugge/wildnatureimages



Exploratory data analysis
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Figure 7: EDA: selected plots



Sampling effort

Poisson random variables are often used to represent counts (e.g.,
number of bald eagles) per unit of time or space (previously,
number of people in one household).
But what if observation (sampling) effort (as measured by the
number of weeks people observed birds) is changing over time?
We cannot directly compare the 2 eagles observed in 1985 to the 7
eagles observed in 2015 when there were only 143 person-hours
(0.85 person-weeks) of observation in 1985 compared with 221
person-hours (1.32 person-weeks) in 2015.
We should examine time trends in the rate of bald eagles sightings;
for example, we will calculate the bald eagle counts per week
(number of bald eagles

hours of observation ⋅ (168 hours/week)).
But Poisson should model counts…



Offsets
We let 𝜆𝑖 be the expected number of eagles in year 𝑖 per with
weeks𝑖 weeks observed in year 𝑖.
Then 𝜆𝑖/weeks𝑖 is a rate: the number of eagles expected per week!
Adjusting the yearly count by observation time is equivalent to
adding 𝑙𝑜𝑔(weeks) to the right-hand side of the Poisson regression
equation—essentially adding a predictor with a fixed coefficient of
1, called an offset:

𝑙𝑜𝑔( 𝜆𝑖
weeks𝑖

) = 𝛽0 + 𝛽1𝑥𝑖

𝑙𝑜𝑔(𝜆𝑖) − 𝑙𝑜𝑔(weeks𝑖) = 𝛽0 + 𝛽1𝑥𝑖
𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝑙𝑜𝑔(weeks𝑖)

Thus, modeling 𝑙𝑜𝑔(𝜆) and adding an offset is equivalent to
modeling rates, and coefficients can be interpreted in terms of
rates.



Interpretation

Ordinary Poisson:

𝑙𝑜𝑔(COUNT) = 𝑙𝑜𝑔(𝜆) = 𝛽0 + 𝛽1𝑋

The average number of eagles has increased by …% per year.
Poisson with Offset:

𝑙𝑜𝑔(RATE) = 𝑙𝑜𝑔(𝜆/𝑡) = 𝛽0 + 𝛽1𝑋
The average number of eagles per week has increase by …% per
year.



Modeling results
We are interested primarily in trends over time in eagle sightings.
We have no control variables other than sampling effort, so we
simply fit a model with year (centered at 1981) and our offset.
model_eagles <- glm(count ~ year_1981, family = poisson,

offset = log(weeks), data = eagles)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.79971104 0.31969178 -2.501506 1.236662e-02
## year_1981 0.07566483 0.01155782 6.546634 5.884818e-11

## Residual deviance = 42.39031 on 35 df
## Dispersion parameter = 1

Bald eagle counts are significantly increasing over time (Z = 6.55,
p < .001), even after adjusting for observation time. The average
eagle sighting rate per week has grown about 7.9% per year (since
𝑒0.0757 = 1.0786) in Hamilton, Ontario.
Adjustments for potential overdispersion using either quasi-Poisson
or negative binomial regression provide minimal changes to model
coefficients and tests.



Other extensions of the Poisson regression model

▶ Zero-inflated models
▶ Hurdle models
▶ Multilevel models



Zero-inflated Poisson models: Weekend drinking
An informal survey of students in an intro stats course included the
question, “How many alcoholic drinks did you consume last
weekend?”. We wish to identify factors associated with increased
drinking.
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Figure 8: Count of drinks consumed last weekend

There are more zeros than expected under a Poisson model.



ZIP: Weekend drinking (continued)

Our zeros are a mixture of responses from non-drinkers (who would
always report 0) and drinkers who abstained during the past weekend.
Ideally, we’d like to sort out the non-drinkers and drinkers when
performing our analysis.
Define 𝜆 to be the mean number of drinks among those who drink, and
𝛼 to be the proportion of non-drinkers (“true zeros”).
Model 𝜆 and 𝛼 (or functions of 𝜆 and 𝛼) simultaneously using covariates
like sex, first-year status, and off-campus residence. For example:
𝑙𝑜𝑔(𝜆) = 𝛽0 + 𝛽1𝑜𝑓𝑓𝑐𝑎𝑚𝑝𝑢𝑠 + 𝛽2𝑠𝑒𝑥
𝑙𝑜𝑔(𝛼/(1 − 𝛼)) = 𝛽0 + 𝛽1𝑓𝑖𝑟𝑠𝑡𝑦𝑒𝑎𝑟
The first part of a ZIP model is a regular Poisson regression model, and
the second part is a logistic regression model.



Hurdle models: Going vague
In a 2018 study, Chapp et al. scraped every issue statement from
webpages of candidates for the U.S. House of Representatives,
counting the number of issues candidates commented on and
scoring the level of ambiguity of each statement.
Research questions:

▶ Which candidates for U.S. House are more likely to have at
least one issue page and to offer statements on a greater
number of issues?

▶ How are a candidate’s political party, incumbency status, and
political beliefs related to their willingness to post stands and
ideas on issues?

▶ How do the demographics and political beliefs of voters in the
candidate’s district impact a candidate’s willingness to
engage?

▶ How does the interplay between candidate profile and voter
profile affect a candidate’s willingness to comment on issues?



Hurdle: Going vague (continued)
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Figure 9: Total issue pages for 2014 US House candidates

Once again, there are more zeros than expected under a Poisson model.
But unlike ZIP models, it is not natural to consider these zeros to be a
mixture. Candidates decide either to post issue statements or not. Those
who decide to not post any issue statements comprise our zeros, and for
those who decide to post issue statements, we can model the number
they choose to post.
Since those who decide to post issue statements “leap over” the zero
category, these models are referred to as hurdle models.



Hurdle: Going vague (continued)

Similar to ZIP models, we will define 𝜆 to be the mean number of drinks
among those who posted at least one issue page, and 𝛼 to be the
proportion of candidates who post at least one issue page (“true
non-zeros” or “true hurdlers”).
Then, model 𝜆 and 𝛼 (or functions of 𝜆 and 𝛼) simultaneously using
characteristics of the candidates and their districts:
𝑙𝑜𝑔(𝜆) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2

𝑙𝑜𝑔(𝛼/(1 − 𝛼)) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋3

Hurdle models focus on modeling non-zeros, whereas ZIP models focus
on modeling true zeros. This really only affects the interpretation of
logistic coefficients.
The count portion of the hurdle model is actually based on a truncated
Poisson distribution (domain starting at 1) rather than a full Poisson
distribution (domain starting at 0). This does not affect the
interpretation of Poisson coefficients.



Multilevel modeling: Going vague

Problem: Even with a hurdle model for number of issue pages, a
condition is still violated in the Going Vague example.
Observations are not independent! Some covariates are measured
at the candidate level (incumbent, party, ideology), while others
are measured at the district level (demographics, ideology of
voters). Candidates from the same district will have the same
values for any covariate at the district level.
Implications: overstate effective sample size, underestimate
standard errors, and overstate significance of covariates
Solution: multilevel (hierarchical / mixed effects) modeling!
Idea: build a regression model for issue pages at the candidate
level, and then build another regression model for coefficients from
the first model using covariates at the district level. Combine into
a single composite model.



Pause to Ponder

With your neighbor(s) discuss plans, ideas, questions, and concerns
you have about teaching Poisson regression somewhere in your
own world.



Some final takeaways

▶ Poisson regression is a natural extension of multiple linear and
logistic regression

▶ Introduce students to the generalized linear model framework
▶ Many cool extensions! Helps students see that statistical

models can be “tweaked”, that it is a growing and changing
field

▶ Can be made accessible! Our class has no math or prob
background, only applied statistics pre-requisites



Preview of materials

github.com/proback/USCOTS25_Poisson_breakout
GitHub repo for this session, containing:

▶ slides for this presentation (including R source code and data)
▶ St. Olaf SDS 316 class folder with class activities for the

Poisson regression unit (keys available upon request).
▶ Draft of brand new Chapter 4 for BMLR2e (Roback, Boehm

Vock, and Legler; expected Fall 2026)

Beyond Multiple Linear Regression: Applied Generlized Linear
Models and Multilevel Models in R by Roback and Legler (2021).
bookdown.org/roback/bookdown-BeyondMLR

https://github.com/proback/USCOTS25_Poisson_breakout
https://bookdown.org/roback/bookdown-BeyondMLR/
https://bookdown.org/roback/bookdown-BeyondMLR/


Thanks!

Please be in touch with any questions, thoughts, feedback, etc.!
Laura Boehm Vock: (boehm@stolaf.edu)
Paul Roback: (roback@stolaf.edu)



Bonus material: Interpreting ZIP

$count
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7542747 0.1440035 5.237891 1.624221e-07
offcampus 0.4159420 0.2058602 2.020507 4.333078e-02
sexm 1.0209002 0.1751937 5.827264 5.634331e-09

$zero
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6036151 0.3114485 -1.938090 0.05261230
firstyear 1.1363880 0.6095155 1.864412 0.06226388

𝑒0.415 = 1.51: Students who drink consume 51% more drinks if
living off campus, after accounting for sex.
𝑒1.136 = 3.11: First year students have 3.11 times greater odds of
not drinking compared to older students.



Bonus material: Interpreting hurdle models

incumbent: 𝑒−1.2085 = 0.299 and 1/𝑒−1.2085 = 3.35. Thus, the odds a
challenger posts at least one issue page are 3.35 times greater than the
odds an incumbent posts at least one issue page, holding all else
constant.
demHeterogeneity: 𝑒−1.173 = 0.309 and 1/𝑒−1.173 = 3.23. Thus,
among candidates who choose to post at least one issue page, the mean
number of issue pages posted are 3.23 times greater with each one unit
decrease in demographic heterogeneity score, holding all else constant.
ideology:democrat: 1/𝑒−0.490 = 1.632 and 1/𝑒−0.490+0.222 = 1.307.
Thus, for each 1 unit decrease in ideology (more liberal), the mean
number of issue pages (for candidates with at least one issue page)
increases by 63.2% for democrats but only 30.7% for republicans.
Overall candidates are disincentivized to take public stances on issues if
they are an incumbent, if their constituents have a wide ranges of
backgrounds, and if their beliefs are less aligned with their constituents.


