Boosting Students' Programming Interest Using an R Shiny App Rstats in General Education Statistics Courses

Xuemao Zhang
East Stroudsburg University
The 2022 Electronic Conference on Teaching Statistics

05/25/2022

Overview

- Background of building the web app Rstats http://esumath.shinyapps.io/rstats
- Rstats web app layout and features
- Students usage information
 - Students usage statistics
 - User experience survey results
- Teaching Examples
 - Univariate descriptive statistics
 - Simple linear regression models
 - Probability calculations
 - Quantile calculations
 - Statistical inferences
- Resources and References
- The slides are available on https://esumath.shinyapps.io/Rstats_eCOTS

Background

- Learning to code familiarizes people with the values of a digital society: how people collaborate and share information.
- Non-computing majors generally do not take a typical programming course due to their fear of the command line.
- Introduction to Programming has not typically been an option as part of a GE course sequence at most universities before 2015 (Ferguson 2015).
- To overcome the fear of the command line for noncomputing students, it is beneficial to introduce computer programming in more GE courses.
 - Introductory statistics course is a good fit to include programming content since the application of most statistical concepts and formulas requires numerical computations.
 - Point-and-click statistical software packages like Minitab, SPSS and Stata are not helpful to improve a student's programming skill.

Background

- R (R Core Team 2021), Python and SAS are the top three programming languages for statistical data analysis in data science.
 - Both R and Python are open source
 - *R* is designed for data analysis
 - R has a less steep learning curve
- More than 18,000 R add-on packages (code written to enhance the core language or solve a specific type of problems) have been developed
- The R Shiny package allows one to build a web app straight from R without using any knowledge of CSS and Javascript (Beeley 2013).
 - Instructors have been developing Shiny web apps to help statistics students learn material more effectively Doi (2016).
- Idea: development of a Shiny web app with Reproducibility.
 - One web app I found is intRo: http://intro-stats.com/
 - The app Rstats was developed under the support of an FPDC 2021 grant.

Background - Main techniques used in Rstats web app

- The whole app is powered by shiny.
- Reproducible R code is done with two techniques:
 - the function interpolate and
 - R package shinymeta.
- The golem framework is used to build the Shiny App backend: **Shiny modules** are used to manage complexity of the app.
 - Each (sub)menu in the app is a module which is a small shiny app as part of the whole app.

Rstats web app layout and features

- The R Shiny web app Rstats http://esumath.shinyapps.io/rstats is used in teaching introductory statistics in General Education.
 - It can conduct all types of data analysis problems in the GE statistics courses with point and click interface.
 - It was used in online homework assignments only
 - WebWork hosted by PASSHE Keystone Library Network https://postulate.klnpa.org/webwork2
- Reproducibility: It captures logic in a Shiny app and generates the R code which can be run on an R console.

Rstats web app layout and features

Rstats has the following six menus:

- Distributions.
 - Calculation of probabilities and quantiles for some typical discrete and continuous distribution.
- Inferences.
 - Statistical inferences about population means, proportions, and variances when data or statistics are given.
- Data Import.
 - Data upload (Only .csv format files are accepted) or manually data entry (up to 5 variables), and data transformation.
- Univariate.
 - Univariate data analysis can be done for the imported data.
- Multivariate.
 - Simple and multiple linear regression models, logistic regression models, and contingency analysis.
- ANOVA.
 - Analysis of variance with one or two factors.

Rstats web app layout and features

Data format:

- Data need to be entered as vectors under the menu
 Inferences
- Data imported or manually entered data need to be tidy (Wickham and Grolemund, 2017) data frames:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.

Students usage statistics

Shiny applications not supported in static R Markdown documents

User experience survey results

Shiny applications not supported in static R Markdown documents

Teaching Examples

What we need today:

- Rstats: http://esumath.shinyapps.io/rstats
- R and Rstudio
 - Installation of R and Rstudio (for later) https://stat545.com/install.html
- Let's use RStudio Cloud if you want to try to run the R code in an R console
 - Rstudio cloud link: eCOTS_2022:
 https://rstudio.cloud/spaces/247851/join?
 access_code=7Os1gcQobAjYvIrf2SJmkZFg9eKPnZuw6XamxKs1
 - Click the button **Join Space**, and click Projects->Rstats
 - The R code in the slides are in the file examples.Rmd. You can use the keyboard shortcut 'Ctrl+Enter' to run the code line by line or paste the R code from the slides to the R Console.
 - The following R packages are installed to the project already

```
install.packages("datarium")
```

o install.packages("dplyr")

[∘] install.packages("ggplot2")

Teaching Examples - Descriptive Statistics

- **Example 1**: Find the mean, median, variance, standard deviation of the data 5, 15, 25, 35, 45
 - Data entry: import the data set as a .csv file or enter it manually
 - Data analysis: Univariate -> Numerical Data
 Analysis

```
Data <- data.frame(Y = c(5, 15, 25, 35, 45))
summary(Data$Y)
mean(Data$Y)
var(Data$Y)
sd(Data$Y)</pre>
```

Teaching Examples - Descriptive Statistics

Example 2: Find the mean, variance and standard deviation of a frequency/relative frequency table

Y Freq

5 4

15 9

25 6

35 4

45 2

Data entry: Let's enter the data as two columns under
 Distributions -> Probability calculation -> Finite

Teaching Examples - Descriptive Statistics

- Example 2 continued
 - Data analysis

```
x = c(5, 15, 25, 35, 45)
w = c(4, 9, 6, 4, 2)
mu <- sum(x * w) / sum(w)
cat("Population/Sample mean:", mu)
sigma2 <- sum((x - mu)^2 * w) / sum(w)
cat("Population variance:", sigma2)
sigma <- sqrt(sigma2)
cat("Population standard deviation:", sigma)
s2 <- sum((x - mu)^2 * w) / (sum(x) - 1)
cat("Sample variance:", s2)
s <- sqrt(s2)
cat("Sample standard deviation:", s)</pre>
```

Teaching Examples - SLR model

■ Example: Use Price as the response variable, draw a scatterplot, calculate the linear correlation coefficient and fit the SLR model

Capacity (in TB) Price (in \$)

0.080	29.95
0.120	35.00
0.200	299.00
0.250	49.95
0.320	69.95
1.0	99.00
2.0	205.00
4.0	449.00

Teaching Examples - SLR model

- Data entry: import the data set as a .csv file or enter it manually
- Data analysis: Multivariate -> SLR Model

Teaching Examples - **Probability calculations**

Distributions -> Probability calculation

 $X \sim N(\mu=1,\sigma=1.5)$. Find the following probabilities

• P(X < 1.8)

```
pnorm(1.8, mean = 1L, sd = 1.5, lower.tail = TRUE)
```

■ P(X > 1.8)

```
pnorm(1.8, mean = 1L, sd = 1.5, lower.tail = FALSE)
```

P(0.5 < X < 1.8)

```
pnorm(1.8, mean = 1L, sd = 1.5, lower.tail = TRUE) -
pnorm(0.5, mean = 1L, sd = 1.5, lower.tail = TRUE)
```

You can try other distributions

Teaching Examples - Quantile calculations

Distributions -> Quantile calculation

$$X \sim N(\mu=1, \sigma=1.5)$$
 .

• Find x such that P(X < x) = 0.05

```
qnorm(0.05, mean = 1L, sd = 1.5, lower.tail = TRUE)
```

• Find x such that P(X > x) = 0.05

```
qnorm(0.05, mean = 1L, sd = 1.5, lower.tail = FALSE)
```

Again, you can try other continuous distributions

- Method 1: use the menu Inferences ->
 - -> **Statistics** if summary statistics of a data set are given
 - -> **Data** if detailed data set is given; data must be entered as vectors.
- Method 2: Use menu **Data Import** to import data or manually enter data and use the following three menus to conduct data analysis
 - *Univariate* for descriptive statistics and inferences about a single population parameter
 - Multivariate
 - ANOVA
- Let's consider statistical inference about population means using Method 1.

Example: A simple random sample of 15-year old boys from one city is obtained and their weights (in pounds) are listed below. Suppose the sample is selected from a normal population

```
146, 140, 160, 151, 134, 189, 157, 144, 175, 127, 164
```

Inferences -> Data

• Find a 96% confidence interval (2-sided symmetric) of the population mean

Test 1: Test the claim that these sample weights come from a population with a mean greater than 147 lb. Use significance level $\alpha = 0.05$.

```
ullet H_0: \mu=147 \ versus \ H_0: \mu>147
```

Test 2: Test the claim that these sample weights come from a population with a mean greater than or equal to 147 lb. Use significance level $\alpha = 0.05$.

```
ullet H_0: \mu=147 \ versus \ H_0: \mu<147
```

Test 3: Test the claim that these sample weights come from a population with a mean equal to 147 lb. Use significance level $\alpha = 0.05$.

```
ullet H_0: \mu=147 \ versus \ H_0: \mu
eq 147
```

Some comments about the app Rstats

- It is for introductory statistics only
- Data manipulation functionality is limited
 - It can perform several data transformations
 - Power and log transformation for numerical variables
 - Transform between numerical variables and categorical variables
 - It cannot perform data cleaning
 - o Missing values can be addressed

Rstats source code

Rstats source code: https://github.com/esumath/Rstats

 You can download the source code and deploy the web app to a server such as www.shinyapps.io.

References

- Beeley, C. (2013). *Web Application Development with R Using Shiny*, Packt Publishing, Birmingham, UK.
- Doi, J., Potter, G., Wong, J., Alcaraz, I. and Chi, P.
 (2016). Web Application Teaching Tools for Statistics
 Using R and Shiny, *Technology Innovations in Statistics Education*, 9(1), 1-32.
- Ferguson, R., Leidig, P. and Reynolds, J. (2015). Including a Programming Course in General Education: Are We Doing Enough?, *Information* Systems Education Journal, 13, 34-42.
- Hare, E. and Kaplan, A. (2017). Designing Modular Software: A Case Study in Introductory Statistics, Journal of Computational and Graphical Statistics, 26(3), 493-500.
- Wickham, H. and Grolemund, G. (2017). *R for Data Science*. O'Reilly Media.
- R Core Team (2021). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria,