STUDENTS' ATTENTION IS ALL YOU NEED TO TRANSFORM COMPLEXITY TO CLARITY

Prince Afriyie School of Data Science University of Virginia

July 19, 2025

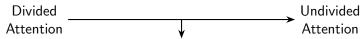
OVERVIEW

1 KEY GOAL: CAPTIVATING STUDENTS' ATTENTION

2 Fundamentals

Big Picture: The Data Pipeline Goals for a useful model Selecting a useful model

3 Case studies of essential toolkit of useful models


4 Intangible Ways to Capture Students' Attention

6 Wrap Up

USCOTS 2025 USEFUL MODELS JULY 19, 2025 2 / 35

Learning begins when we have our students' attention

FROM DIVIDED TO UNDIVIDED ATTENTION

1. Motivation: Through Data And Useful Models
Piqued Interest

Engagement

Enhanced Understanding

Captivated Attention

Deep Understanding and Inspiration

2. Intangibles: Being Human

Keller's ARCS Model of Motivational Design

Component	Description
Attention	Capture learners' interest and curiosity.
Relevance	Link learning to their needs and goals.
Confidence	Build belief in their ability to succeed.
Satisfaction	Ensure they feel rewarded and fulfilled.

Reference: Keller, J. M. (1987). Development and use of the ARCS model of motivational design. Journal of Instructional Development, 10(3), 2–10.

Fundamentals

6/35

THE JOURNEY OF DATA

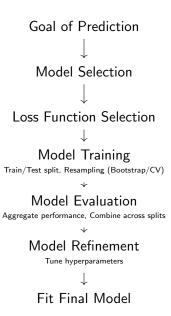
Pose a Research Question

DATA ENGINEERING

ELEMENTS OF STATISTICAL INVESTIGATION

Interpret Results

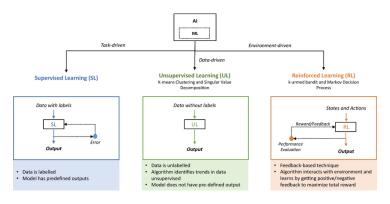
Useful Models


https://chatgpt.com/

Goals for a useful model

- Usefulness in the future
- 2 Fast/Efficient
- 8 High Accuracy
- 4 Interpretable and explainable
- 6 Generalizable
- 6 Guaranteeable

https://databookuw.com/


Machine Learning Pipeline

How do you select a useful model?

Depends on your goals:

- Data-driven models: Unsupervised Learning
- Task-driven models: Supervised Learning
- Environment-driven models: Reinforcement Learning

[1] Hunter et al. World Journal of Emergency Surgery (2023) 18:16.

SUPERVISED LEARNING MODELS

Model Type	Target Variable	Examples
	Туре	
Multiple Regression	Continuous nu-	Linear Regression, Ridge, Lasso,
	merical	ElasticNet, SVR
Logistic Regression	Binary or multi-	Binary Logistic, Multinomial Logis-
	class categorical tic, Regularized Logistic Regression	
Classification	Categorical (bi-	Decision Trees, Random Forest,
	nary or multi-	KNN, SVM, Naive Bayes, XGBoost,
	class)	Neural Networks

Unsupervised Learning Models

Model Type	Target Variable	Examples
	Туре	
Clustering	No predefined	K-Means, Hierarchical Clus-
	target variable	tering, DBSCAN, Gaussian
		Mixture Models
Dimensionality Reduction	No predefined	PCA, t-SNE, UMAP, Factor
	target variable	Analysis
Association Rule Learning	No predefined	Apriori, Eclat
	target variable	

REINFORCEMENT LEARNING MODELS

Model Type	Target Variable	Examples
	Туре	
Policy/Value Based Models	Reward signal	Q-Learning, SARSA, Deep
	(scalar feedback)	Q-Networks (DQN)
Actor-Critic Models	Reward signal	A2C, DDPG, PPO
	(scalar feedback)	

Example 1: Captivating Students' Attention through Modeling with Their Own Data

LEVERAGING STUDENT DATA TO CAPTURE THEIR ATTENTION ON USEFUL MODELS

Data source: Data from my students

- Computer type
- Hours of sleep, hours on phone, and hours spent outside in a typical day
- Favorite sport to watch on TV
- · Age in months
- Age difference between parents (father's age mother's age)
- Favorite music genre
- In one word, summarize their summer (or winter) break

LEVERAGING STUDENT DATA TO CAPTURE THEIR ATTENTION ON USEFUL MODELS

Data source: Data from my students

APP URL: https:

//prince-afriyie.shinyapps.io/USCOTS25_Student_Data_App/

Example 2: Captivating Students' Attention through Modeling with Sports Data

LEVERAGING SPORTS DATA TO CAPTURE STUDENTS' ATTENTION ON USEFUL MODELS

Data source: NFL Play-by-Play Data: nflfastR R package

- Contains Play-by-play for all NFL games since 1999
- Rich real-world data: Combines numeric, categorical, and time-based features
- Predictive potential: Models can predict yards gained, play success, expected points added (EPA), or win probability
- Strategy analysis: Students can engage as coaches and analysts use it to optimize playcalling
- NFL play-by-play data records every individual play during a football game, capturing detailed information about:
 - · Game context: which game, teams, quarter, time remaining
 - Play situation: down, distance, field position
 - Play description: run, pass, kick, penalty
 - Outcome: yards gained, touchdowns, turnovers, EPA

LEVERAGING SPORTS DATA TO CAPTURE STUDENTS' ATTENTION ON USEFUL MODELS

Data source: NFL Play-by-Play Data: nflfastR R package

APP URL:

https://prince-afriyie.shinyapps.io/USCOTS25_NFL_App/

OTHER AVAILABLE PACKAGES

- sportsdataverse R ecosystem is a collection of data package which has data on WNBA, NCAA, MLB, etc
- NBA Player Stats: nbastatR R package
- Lahman Baseball Database: Lahman R package
- NHL team and player data: hockeyR R Package

Example 3: Captivating Students' Attention through Modeling with Financial Data

LEVERAGING FINANCIAL DATA TO CAPTURE STUDENTS' ATTENTION ON USEFUL MODELS

Data source: Freddie Mac Single-Family Loan-Level Dataset: https://www.freddiemac.com/research/datasets

- Data is public but requires registration
- Real-world mortgage data (millions of loans)
- Detailed variables similar to underwriting models used by banks
- Longitudinal performance to study defaults, prepayments, and credit risk
- Benchmarks for academic research, mortgage default modeling, prepayment analysis, housing market policy analysis
- Variables include credit score, original loan-to-value ratio, flag indicating first-time buyer, number of units in the property, delinquency status code, current unpaid principal balance, default status, etc.

LEVERAGING FINANCIAL DATA TO CAPTURE STUDENTS' ATTENTION ON USEFUL MODELS

Data source: https://www.freddiemac.com/research/datasets

APP URL: https://prince-afriyie.shinyapps.io/USCOTS25_Freddie_Mac_App/

OTHER AVAILABLE PACKAGES

- Fannie Mae Single-Family Loan Performance Data: https://www.fanniemae.com/
- Lending Club Loan Data: https: //www.kaggle.com/datasets/wordsforthewise/lending-club
- HMDA (Home Mortgage Disclosure Act) Data
- Fintech Lending Datasets (Prosper, SoFi)

Example 4: Captivating Students' Attention through Modeling with Data through APIs

LEVERAGING API DATA TO CAPTURE STUDENTS' ATTENTION ON USEFUL MODELS

Data source: OpenWeather API: https://openweathermap.org/api

APP URL: https://prince-afriyie.shinyapps.io/USCOTS25_Open_Weather_App/

OTHER FREE APIS FOR INSTRUCTION

- The Movie Database (TMDB) API: https://developers.themoviedb.org/3
- Data.gov APIs: https://api.data.gov/
- RestCountries API: https://restcountries.com
- Dog API (or Cat API): https://dog.ceo/dog-api/

Intangible Ways to Capture Students' Attention

INTANGIBLE WAYS TO CAPTURE STUDENTS' ATTENTION

Intangible: "low effort" but high impact

- Make an inviting syllabus
- Pre-course surveys
- Storey telling
- Being relatable

Wrap Up

31 / 35

How do you Gain Students' attention to transform complexity to clarity

- Motivation: Through Data And Useful Models
- Remove any unnecessary barriers to hamper students' learning

BE RELATABLE TO YOUR STUDENTS

33 / 35

Thank you so much for your ATTENTION! Q&A or Discussion

REFERENCES

- Keller, J. M. (1987). Development and use of the ARCS model of motivational design. Journal of Instructional Development, 10(3), 2-10
- 1 https://databookuw.com/
- Hunter et al. (2023) Science fiction or clinical reality: a review of the applications of artificial intelligence along the continuum of trauma care. World Journal of Emergency Surgery 18:16.
- 4 https://chatgpt.com/
- 6 https://selectorgadget.com/