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Motivation
** “Write-to-learn” tasks improve learning outcomes

** Feasibility of effective formative assessment in large classes
“* Algorithms can assist this aim
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** High intra-rater agreement (QWK = 0.88)

Implications
** Pilot cluster analysis for scalable formative assessment
** Instructors of all class sizes would benefit
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RQ1: What level of agreement is achieved among trained human

raters labeling (i.e., scoring) short-answer tasks?

RQ2: What level of agreement is achieved between human raters and
an NLP algorithm?

RQ3: What sort of NLP representation leads to good clustering performance, and

how does that interact with the classification algorithm?
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- METHODS

»Data: 1,935 students completed 6 short-answer tasks about statistical
inference as part of a prior study (see Beckman, 2015)

»Responses were divided among 4 human raters with sufficient intersection to
evaluate inter-rater agreement

» A subset of student responses scored in 2015 by one of the raters were
again evaluated by this same rater to evaluate intra-rater agreement

» An algorithm scored a subset of student responses for correctness




R E S U LT S Rater Comparison Measure of Reliability

Rater A & Rater C QWK =0.83

- Rater A & Rater D QWK =0.80
» Substantial inter-rater agreement among human

raters A, C, D Rater C & Rater D QWK =10.79

» Almost perfect intra-rater agreement for rater A Rater A (2015) & Rater A QWK = 0.88

Rater A & Rater C & Rater D Fleiss’ Kappa = 0.698

» Similar calculations performed with algorithm as

e Rater A & SFRN WK =0.79
an additional rater ater Q

» Substantial inter-rater agreement among Rater € & SERN QWK =0.82

algorithm and human raters Rater D & SFRN QWK = 0.74

Rater A & Rater C & Rater D & SFRN Fleiss’ Kappa = 0.678

Table 1: Reliability comparisons among human raters (A, C, D) and an NLP algorithm (SFRN).




LIMITATIONS & FUTURE WORK

Limitations

Students come from classes of varying sizes (not a single large class)

Future Work
Test complete prototype on large enrollment class data
Manage tradeoff between classification of correctness and density of clusters
Investigate semantic meaning manually to derive a process for algorithm clustering

Continued research toward large class formative assessment that approaches small
class quality and instructor burden



