Determining an Appropriate Placement Test for Introductory Statistics: Preliminary Findings

Katerina Allan

Mount Saint Vincent University

Halifax, NS, Canada

katerina.allan@msvu.ca

SAINT VINCENT UNIVERSITY

Douglas Whitaker

Mount Saint Vincent University Halifax, NS, Canada douglas.whitaker@msvu.ca

> ECOTS 2022 Virtual Conference 2022-05-24

Context & Background

- Mount Saint Vincent University (MSVU) is a small, primarily undergraduate university in Atlantic Canada.
- MSVU has an existing placement test for precalculus and calculus but not for statistics.
- This study seeks to **determine an appropriate placement test** for statistics including the extent to which the existing placement test can be used for this purpose or adapted.
- Document validity evidence aligned with *Standards for Educational* and *Psychological Testing* (AERA et al., 2014)

This Presentation

- Is the existing math placement test predictive of statistics success?
 - Ordinal logistic regression
 - Comparison with results for precalculus
- What are the properties of the test and items?
 - Classical test theory (e.g., Crocker & Algina, 1986)
- What is an appropriate test blueprint for our statistics placement test?
 - Description of process
- All analyses performed using SPSS version 26 for macOS

Description of data

- Placement test data was collected from Fall 2019 through present.
- Demographic and course grade data were linked to placement test scores by the registrar's office.
- Some participants took both introductory statistics and Precalculus.
- *Limitations*: small sample size, and the placement test is usually only taken by students wishing to take precalculus or calculus

Characteristic	Intro. Stats	precalculus
Total Sample Size	106	52
Grade Not Available/In Progress	13	0
BIPOC Identifying	8.5%	21.2%
International	8.5%	23.1%
Women/non-binary	70.1%	78.8%
Accessibility Services	9.4%	11.5%
Age (mean)	21.29	21.65
Age (median)	20	20

Grade	Code
"Low Grade" F, D, C-, C, C+	0
B-	1
В	2
B+	3
A-	4
А	5
A+	6

Ordinal Logistic Regression Results:

-	Grade	N	Margin Percenta	al age	In	ntr	o. Stats	5					95° Confid Inter	% lence rval
	0	9	18.0%	/ D			Threshold/	-			.10	C : .	Lower	Upper
	1	2	4.0%			-	Variable	Estimate	Std. Error	wald	at	Sig.	Bound	Bound
	2	5	10.0%	/ D			[Grade = 0]	2.797	1.430	3.825	1	.050	006	5.600
	3	2	4.0%					2 07 4	4 4 2 2		4		255	5 00 4
	4	7	14.0%	, 5			[Grade = 1]	3.074	1.439	4.567	1	.033	.255	5.894
	5	7	14.0%	, D			[Grade = 2]	3.678	1.465	6.300	1	.012	.806	6.551
-	6	18	36.0%	ý D										
	Valid N	50	100.0%	%			[Grade = 3]	3.896	1.477	6.962	1	.008	1.002	6.790
	Good	ness	of-Fit											
Deserve	Chi-Sq	Juare	df	Sig.			[Grade = 4]	4.573	1.513	9.132	1	.003	1.607	7.539
Devianc Link fun	94.5 e 77.9 ction: Logi	50 74 it.	89 89	<mark>.324</mark> .792			[Grade = 5]	5.248	1.549	11.479	1	.001	2.212	8.285
							ScoreA	<mark>.210</mark>	.068	9.680	1	<mark>.002</mark>	.078	.343
	Ν	Node	el Fitting I	nform	ation									
Model		-2	Log Likeliho	bod	Chi-Square	df	Sig.							
Intercep	ot Only		120.364								Wa	rnings		
Final			109.729		<mark>10.635</mark>	1	<mark>.001</mark>		There are	77 (68.8%) (cells (i.	e., depend	lent variable	levels by
Link fun	ction: Logi	It.							observed o	combinations	s of pre frea	edictor va Jencies.	riable values)	with zero

Ordinal Logistic Regression Results:

-	Grade	N	Margin Percenta	al ige	Pr	ec	calculu	S					959 Confid	% lence wal
	0	15	28.8%)			Threshold/						Lower	Upper
	1	4	7.7%				Variable	Estimate	Std. Error	Wald	df	Sig.	Bound	Bound
	2	2	3.8%				[Grade = 0]	2.638	.957	7.602	1	.006	.763	4.513
	3	5	9.6%					2 2 2 2	070	10.000				
	4	5	9.6%				[Grade = 1]	3.086	.976	10.006	1	.002	1.1/4	4.999
	5	4	7.7%				[Grade = 2]	3.312	.988	11.247	1	.001	1.376	5.247
	6	17	32.7%)										
	Valid N	52	100.0%	6			[Grade = 3]	3.870	1.023	14.321	1	.000	1.865	5.874
	Good	Iness	s-of-Fit											
	Chi-So	quare	df	Sig			[Grade = 4]	4.437	1.064	17.389	1	.000	2.352	6.523
Pearson Devianc Link fun	.129 e 79.1 ction: Log	058 L77 it.	107 107	<mark>.072</mark> .980			[Grade = 5]	4.883	1.099	19.730	1	.000	2.728	7.037
							ScoreA	<mark>.224</mark>	.057	15.298	1	.000	<mark>.112</mark>	.336
Model Fitting Information														
Model	_	-2	Log Likeliho	bod	Chi-Square	df	Sig.							
Intercep	ot Only		129.574			-					Wa	rnings		
Final		••	110.637		<mark>18.937</mark>	1	<mark>.000</mark>		There are	95 (71.4%) (cells (i.	e., depend	ent variable	levels by
LINK fun	ction: Log	IT.							observed o	combinations	s ot pre frea	edictor var Jencies.	iable values)	with zero

Results (Ordinal Logistic Regression)

- The probability of receiving a Low Grade decreases as placement test score increases. This was true for both introductory statistics and for precalculus.
 - Statistics: $logit(\hat{P}(Grade \le 0)) = 2.797 0.210(ScoreA)$
 - Precalculus: $logit(\hat{P}(Grade \le 0)) = 2.638 0.224(ScoreA)$
- There was strong evidence that the final model using the placement test score as a predictor was superior to the intercept only model for both introductory statistics ($\chi^2(1) = 10.635$, p < .001) and precalculus ($\chi^2(1) = 18.937$, p < .000)
- For a 1-point increase in the score on the placement test (ScoreA), we
 expect that that odds of getting a Low Grade (Grade = 0) will be 0.8 times
 greater than the odds of getting a Higher Grade (Grade > 0).
 - This applies to both intro. stats and precalculus.

Results (point biserial correlation)

ltem	Correlation	Significance	Iter
1	.379**	.000	15
2	.396**	.000	16
3	.221**	.006	17
4	.336**	.000	<mark>18</mark>
5	.450**	.000	19
6	.384**	.000	20
7	.516**	.000	21
8	.420**	.000	22
9	.418**	.000	23
10	.333**	.000	24
11	.344**	.000	25
12	.275**	.001	26
<mark>13</mark>	<mark>.184*</mark>	<mark>.021</mark>	27
14	.409**	.000	28

ltem	Correlation	Significance
15	.406**	.000
16	.302**	.000
17	.380**	.000
<mark>18</mark>	<mark>155</mark>	<mark>.053</mark>
19	.340**	.000
<mark>20</mark>	<mark>.079</mark>	<mark>.326</mark>
21	.353**	.000
22	.447**	.000
23	.534**	.000
24	.532**	.000
25	.539**	.000
26	.370**	.000
27	.419**	.000
28	.462**	.000
<mark>29</mark>	<mark>.144</mark>	<mark>.074</mark>

- This set of correlations indicates that item 13, 18, 20 and 29, which each have a correlation under 0.2 may be good candidates for removal from the placement test.
- Item 18 is negative, which may indicate miscoding, or that the item has poor fit.
- Overall, most items appear to be positively correlated with the overall test placement test score.

Description of Blueprint Process

• Synthesize key documents to determine prerequisite skills for MSVU intro. stats

Necessary Information	Primary Source
Outcomes for MSVU Intro. Stats course	Internal course outcomes document
Foundational math skills mapping	Mathematics Foundations for Success in Introductory Statistics (Peck, Gould, & Utts, 2019)
Skills that would be reasonably known by many MSVU students	Nova Scotia secondary education curriculum documents (Department of Education and Early Childhood Development, 2019a-g)

- The test blueprint statement will synthesize and summarize the topic that must be assessed on the placement test.
- The test blueprint provides a framework for developing or identifying placement test items, each of which should fit within a blueprint statement.
- *Note*: Existing placement test items are being treated as confidential, so any items shown are recreations similar to such items.

	Bivariate Quantitative Data						
Course Outcomes Document	Scatterplots	Simple linear regression (descriptive)					
Requisite Skill as described by (Peck, Gould, & Utts, 2019)	Create scatterplots and residual plots	Calculate residuals	Use the regression line to make predictions				
Prerequisite Skill (Peck, Gould, & Utts, 2019)	Plot an ordered pair (x, y) in a rectangular coordinate system	Find the vertical distance between a point and a line	Use the equation of a line to find the y-value associated with a given x-value				
Provincial Curriculum Outcomes	Math10: RF04 Students will be expected to describe and represent linear relations, using words, ordered pairs, tables of values, graphs, and equations. RF04.05 Draw a graph from a set of ordered pairs within a given situation, and determine whether the relationship between the variables is linear.	Math 10: RF08 Students will be expected to solve problems that involve the distance between two points and the midpoint of a line segment.	Math 9: PR03 Students will be expected to model and solve problems, where a, b, c, d, e, and f are rational numbers, using linear equations of the form Math 10:RF06 Students will be expected to relate linear relations to their graphs, expressed in slope-intercept form ($y = mx +$ b), general form (Ax + By + C = 0), slope-point form ($y - y1$) = m(x - x1)				
Blueprint Statement	Students can graph an ordered pair on a scatterplot.	Students can calculate the distance between two points.	Students can use linear equations to calculate unknown values.				
Example Item	Item 20: Maddison makes \$9.00 per hour selling shirts and earns a \$3.00 commission for each shirt she sells. If h represents the number of hours she works, and s represents the number of shirts she sells, and p represents her total pay in dollars, then the relationship among these quantities is correctly represented by [five options given]	Item 16: The line with a slope of -4 and y- intercept 5 passes through the point [five options given] Item 17: a line passing through the point (2,9) and (6,7) has slope [five options given]	Item 10: If $4x - 8y - 3 = -2x - y - 1$, then $y = $ [five options given]				

Summary of Results

- Overall, higher placement test scores are associated with a decreased probability of receiving a Low Grade in both introductory statistics and precalculus.
 - *Next steps:* Include additional covariates are considered, such as age, gender, ethnicity and accessibility needs.
- Only a few items have very low point biserial correlations.
 - *Next steps:* Investigate these items further and explore the psychometric properties of the test and items further.
- The test blueprint shows that some items may be appropriate for a statistics placement test.
 - *Next steps:* Identify existing items that fit within the blueprint, explore to what extent an aggregate score from these items is predictive of success, and determine what additional items should be created.

References

- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). *Standards for Educational and Psychological Testing*. American Educational Research Association. <u>https://www.testingstandards.net/open-access-files.html</u>
- Crocker, L. M., & Algina, J. (1986). Introduction to classical and modern test theory. Holt, Rinehart, and Winston.
- Department of Education and Early Childhood Development. (2019a). Calculus 12 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Calculus%2012%20Guide%20%282004%29.pdf</u>
- Department of Education and Early Childhood Development. (2019b). Extended Mathematics 11 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Extended%20Mathematics%2011%20Guide%20%282017%29.pdf</u>
- Department of Education and Early Childhood Development. (2019c). Mathematics 10 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Mathematics%2010%20Guide%20%282014%29.pdf</u>
- Department of Education and Early Childhood Development. (2019d). Mathematics 11 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/resource-files/Mathematics%2011%20Guide%20%282014%29.pdf</u>
- Department of Education and Early Childhood Development. (2019e). Mathematics 12 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Mathematics%2012%20Guide%20%282015%29.pdf</u>
- Department of Education and Early Childhood Development. (2019f). Pre-Calculus 11 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Pre-Calculus%2011%20Guide%20%282014%29.pdf</u>
- Department of Education and Early Childhood Development. (2019g). Pre-Calculus 12 Guide. Nova Scotia. <u>https://curriculum.novascotia.ca/sites/default/files/documents/curriculum-files/Pre-Calculus%2012%20Guide%20%282016%29.pdf</u>
- Peck, R., Gould, R., & Utts, J. (2019). Mathematics Foundations for Success in Introductory Statistics. The Charles A. Dana Center. <u>https://dcmathpathways.org/sites/default/files/resources/2019-08/Mathematics_Foundations_for_Success_in_Introductory_Statistics_20190809.pdf</u>

Questions? Live Q&A on Tuesday, May 24th at 2:40 – 3:20 PM Eastern Determining an Appropriate Placement Test for Introductory Statistics: Preliminary Findings

Katerina Allan

Mount Saint Vincent University

Halifax, NS, Canada

katerina.allan@msvu.ca

SAINT VINCENT UNIVERSITY

Douglas Whitaker

Mount Saint Vincent University Halifax, NS, Canada douglas.whitaker@msvu.ca

> ECOTS 2022 Virtual Conference 2022-05-24