eCOTS Workshop: Adapting and Adopting High Impact, Little Time (HILT) Activities to Clarify the Meanings of Key Words Used in Statistics

Neal Rogness, Grand Valley State University

Jennifer Kaplan, University of Georgia

May 21, 2018

This material is based upon work supported by the National Science Foundation under Grant No. 1504013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Introductions

Introduction to the Project

Language in the Classroom

- Unless students and teachers are using words in the same way, "there is a vast amount of room for misunderstanding that may never be detected." (p. 166)¹
- Language can pose as a barrier for students with entry into disciplines including those in the STEM field.^{1,2,3,4}
 - Students perception that a subject is difficult solely based on the lack of understanding of the vocabulary.^{2,5}
- It is"...common knowledge in science education that terms used to describe scientific concepts in terms of everyday phenomena often pose a problem for students." (p. 866)⁶
 - perhaps because people connect what they hear to what they have heard and experienced in the past.^{3,6}

Lexical Ambiguity & the Typical Introductory Statistics Curriculum

- Lexical Ambiguity...
 - Domain-specific words that are similar to commonly used English words but have different meanings within a discipline.⁷
 - Statistics: average, normal, parameter, random, ...
 - Shown to create problems for students in many STEM disciplines:
 - Science^{8,3}, Mathematics^{9,10}, Statistics^{11, 12,13,14,15}
 - Instructors should address the differences in meaning explicitly in the classroom.^{16,17,18}
 - One suggestion is to exploit the differences between the uses.¹⁹

Typical introductory statistics course...

- Widely viewed as having a fixed, overfilled curriculum.
- Perceived lack of class time to try new approaches.²⁰

Words with Potential Lexical Ambiguity

Center	Minimum	Parameter	Response
Control	Mode	Population	Sample
Correlation	Association	Bias	Scatter
Distribution	Average	Error	Simple
Event	Confidence	Independent	Skew
Experiment	Random	Normal	Standard
Margin	Spread	Significant	Statistic
Mean	Nominal	Range	Statistics
Median	Null	Residual	Variance

Activity Development: Desirable Characteristics

- Help students understand the language of statistics
- Easily incorporated into class with a minimal investment of time
- Have the **HILT** attribute
 - High Impact on student learning
 Require Little Time for an instructor to enact

NSF Project: Specific Project Aims

- Create and implement exemplary HILT activities for addressing issues in student learning in statistics associated with language use
- Research and document differences in student learning outcomes associated with the classroom use of the HILT activities

NSF Project: Expected Outcomes

- Set of research-based HILT activities to address issues in student learning of statistics related to language use
- Evidence for the effectiveness of the activities
- Gained experience in implementing an interactive Professional Development (PD) model
- Establishment of a web-repository (Wikispace)

Activity Effectiveness

- Primarily measured through two forms of studentlevel data collected at the end of the semester:
 - Written responses to a prompt asking for the statistical definition of a word (Lexical Ambiguity Instrument-Post or LAI-Post)
 - Answer to a multiple-choice or short answer question posed on a final examination (application-based understanding of word)
- Data were collected from students who were exposed to the HILT activities (taught by HILT Instructors) and from students who were not exposed to the HILT activities (taught by a subset of Comparison Instructors)

Featured Words

- Parameter-Statistic
- Random

Coding Rubric: LAI Prompt - parameter

Category	Description
PERIMETER	Total outside length or area
VARIABLE	Any measureable quantity
COLLOQUIAL	Boundary, conditions, intervals, guidelines, rules
POPULATION, SAMPLE, OR DATA	Correct definition of one of the terms
STATISTIC	Correct definition of statistic
INCOMPLETE STATISTICAL	Characteristic of the population
SPECIFIC PARAMETER	Ex: Population mean or proportion
CORRECT STATISTICAL	A numerical summary of the population

Sample Written Responses - parameter

Correct Statistical

- A numerical value summarizing the population data is a parameter.
- A numerical characteristic of a population as distinct from a statistic or sample

Specific Parameter

- A parameter can be population mean, population proportion, and population standard deviation.
- A population mean would be a parameter.

Incomplete Statistical

- A parameter is the information that is recorded about a population and shows things about the population.
- Parameter is a value that does not change.

Statistic

- Parameter is a numerical measurement of one set of data.
- A synonym is a statistic which measures the sample.

Sample Written Responses - parameter

Population, Sample, or Data

- •Parameter is the total population of people in a study.
- •Sample of the population
- •A parameter is data collected from a study.

Variable

- •A parameter is a numerical value.
- •Something measurable
- •A numerical summary

Perimeter

- Parameter is the circumference of a region.
- A parameter is the outside length of an object.

Sample Written Responses - parameter Colloquial

- A parameter, in its common meaning, is a characteristic, feature, or measurable factor that can help in defining a particular system.
- Parameters are criteria, or requirements.
- A parameter is a way in which a statistician chooses who is going to be in his sample group. It may include or exclude certain people/things in the sample.
- A parameter is what specifies where you can obtain data for an experiment.
- The parameter that we are taking data from is the students that are ONLY on meal plan.
- A defined set of possible numbers or outcomes.
- parameter is the low and high of something, like it needs to be in that interval.

Student Definitions of *Parameter* (no HILT activity)

Coding Rubric: LAI Prompt - *statistic*

Category	Description
PARAMETER	A numerical description of the population.
NAMED STATISTIC	Michael Jordan's shooting percentage is 67%
INFERENCE	Data used to make inferences or using the information from the sample to make comparisons
OBSERVATION, SAMPLE, OR DATA	A statistic is one value from the sample. Statistics are a set of numerical data.
INFORMATION	Refers to quantitative information derived from data with no mention of a sample or inference
DISCIPLINE	Statistic is a type of math class.
SPECIFIC STATISTIC	A percentage calculated from a sample
CORRECT STATISTICAL	A numerical value summarizing the sample data is a parameter.

Sample Written Responses - *statistic*

Correct Statistical

- Statistic means a numerical value summarizing the sample data.
- a quantitative variable that describes a sample

Specific Statistic

- Average of the sample
- A statistic is a percentage or proportion that represents the quantity of a characteristic within a sample.

Discipline

- Statistics is a branch of study that uses data to make informed conclusions.
- The definition of statistics is a fun class that you learn a lot in.

Parameter

- Statistic is a numerical value summarizing the population.
- A statistic is a piece of information about the whole population.

Sample Written Responses - *statistic*

Observation, Sample, or Data

- Statistic in this context means the results recorded from the researcher's sample of people.
- A statistic could also be called a sample.

Named Statistic

- Michael Jordan's shooting average is .04%.
- This statistic represented the percentage of girls who are in STAT 2000.

Inference

- A statistic is a proportion of a sample used to make an inference about a larger population.
- collecting and analyzing data to infer something
- Statistics is the data provided from tests performed on a sample.

Sample Written Responses - *statistic*

Information

- A piece of information gathered from a set of data.
- A fact based on numerical data.
- A fact or piece of data in a study of a large quantity of numerical data.
- A statistic is a way of representing data.
- A statistic is a fact that conveys a certain message.
- A statistic is an organized collection of analyzed data that gives you some sort of information.

Student Definitions of *Statistic* (no HILT activity)

Activity for Parameter and Statistic

• All vs. Small

(https://hilt-statistics.wikispaces.com/All+vs.+Small)

Post-Instruction *parameter* Final Exam Question – HILT vs. non-HILT

The mean GPA of all students at GVSU is an example of a:

a. Parameterb. Populationc. Sample

d. Statistic

Group	Parameter	Population	Sample	Statistic
Candy	89 (65.9%)	5 (3.7%)	2 (1.5%)	39 (28.9%)
All vs. Small	37 (67.2%)	7 (12.7%)	2 (3.6%)	9 (16.4%)
Comparison	51 (35.7%)	31 (21.7%)	12 (8.4%)	49 (34.3%)

Student Definitions of *parameter* LAI-Post – HILT vs. non-HILT

Student Definitions of *statistic* LAI-Post – HILT vs. non-HILT

Featured Words

- Parameter-Statistic
- Random

Student Definitions of *random* – **Pre-Instruction**

- b. Provide a synonym (using one or more words) for the word "random" that maintains the same meaning as you used in the prior sentence. It is not necessary to rewrite the complete sentence.
 W CONCL
- Most common use of *random* (49%):

An occurrence that is unplanned, unexpected or haphazard (Subject 394)

• Types of choosing:

1.without criteria, plan or prior knowledge (17%)

2.without order or pattern (8%)

- 3.without bias (4%)
- Vague definition (10%): By chance (Subject 275).

Student Definitions of *random* – **Post-Instruction**

Category		Description
Incorrect	12%	We used a random variable today. Random: unknown
By Chance	4%	For the survey, a random sample was picked. By chance that something occurred.
Without Order or Reason	39%	It was a random sample, which provides independence. Random: persons were chosen not based on any reason.
Unexpected, Not Predictable	14%	I was picked for a random sample. Not pre-determined.
Without Bias, Representative	23%	The sample population is a random sample. Sample is equally representative of all groups of the population
Equally Likely	8%	We took a random sample of the students. Everyone was equally likely to be chosen for the sample.

Activity for Random

• Zebra vs. Hat

https://hilt-statistics.wikispaces.com/Zebra+Hat

Student Definitions of *random* LAI-Post – HILT vs. non-HILT

n = 147

Common Final Exam Question

The national graduation rate for athletes at Division III colleges and universities is 57% (compared to 63%) for all students). The athletic director at Brandzee College wants to do a retrospective study of graduation rates of athletes at his college. He plans to use a *random* sample of 90 students athletes selected from all of the student athletes who attended Brandzee College in the last 20 years. Give directions for the athletic director to select the *random* sample of 90 student athletes.

Photo: gvsu.edu/gvnow/2016/becker-named-director-of-athletics-9319.htm

Coding Rubric: Athletic Director Random Sample

Category	Description
INFERENCE PROCEDURE	Student either completes or explains a hypothesis test or confidence interval
EVERYDAY RANDOM	AD should choose without a pattern or plan. For example, the next time there is a meeting of all the athletes, just randomly hand out surveys, and other convenience samples.
SYSTEMATIC	responses that indicate the AD should use a system, but do not include stratification. For example, the AD should get the list and select every X subjects
STRATIFY	responses that indicate the AD should stratify in some way before taking the sample. For example students may suggest that the AD ensure subjects from every year, sport, or gender.
RANDOM – VAGUE	responses that indicate AD should take a random sample, but do not specify how this should be done. For example, the AD should take a random sample of the student athletes.
RANDOM – COMPUTER VAGUE	Responses that indicate that AD should use a random number generator to select sample, but does not explain how this should be done. For example, use a random number generator to select 90 subjects.
RANDOM – COMPLETE	Responses that include complete directions for selecting a random sample. For example, put all of the names in a hat or number all the names and use a random number generator to choose 90 numbers that correspond to names on the list.

Post-Instruction *random* **Final Exam Question - HILT vs. non-HILT**

Student Definitions of *random* LAI-Post – HILT vs. non-HILT

For their survey, the researchers took a random sample of young adults, aged 18 - 35, from the list of registered voters in Georgia. What does *random* mean in this context?

Does the response use everyday language?

Student Definitions of *random* LAI-Post – HILT vs. non-HILT

Does the response use statistical language?

Student Definitions of *random* LAI-Post – HILT vs. non-HILT Does the response use statistical language? Probabilistic Language

Other Statistical Ideas related to Random Sampling

Refers to:	Hilt	Comparison
Agent	4.0%	1.5%
Representative	2.3%	1.9%
Unbiased	21.2%	17.6%
Time to Complete

- All HILT Instructors indicated the time needed to implement the HILT activity in the classroom was "About Right."
- Estimates of the total amount of time to introduce the activity, conduct the activity in class, and provide reminders: varied from 5 to 15 minutes with a mean of 9.4 minutes (SD = 3.8)

Poll

Poll Question 1:

Which activity are you most interested in implementing?

- All vs Small (parameter/statistic)
- Zebra Hats (random)

Poll Question 2:

When are you most likely to implement the activity you chose?

Discussion of Potential Adaptations

- Share in Chat Window
- Raise Hand to be Unmuted

How the Project Team Worked with the HILT Instructors

HILT-LAS IUSE Project Overview

- Faculty Learning Community (FLC)-style professional development
- •Two academic years
- Six introductory statistics instructors
 - •Participated in two Summer Workshops
 - •Meet bi-weekly with the PIs over three semesters
 - •<u>Semester 1</u>: Classroom tested the "Zebra-Hat" activity
 - •<u>Semester 2</u>: Developed/classroom tested new HILT activity for other words of interest
 - •<u>Semester 3</u>: Classroom tested a different HILT activity

Online Faculty Learning Community (oFLC) 1.0

 At the end of a Pre-USCOTS 2017 Workshop, a group of workshop participants selfidentified as being interested in forming an online Faculty Learning Community (oFLC) related to HILT activities

Online Faculty Learning Community (oFLC) 1.0

- oFLC members met bi-weekly throughout the fall and winter terms to discuss:
 - Classroom usage of existing HILT activities
 - Development of new HILT activities based on additional words of interest
 - Significant/Significance and Variable/Variance
 - Drafts of new HILT activities
 - Classroom usage of new HILT activities
 - Data Collection
 - Data collection methods to better understand the everyday meanings students attach to these words (pre-activity)
 - Institutional IRB requirements
 - Identification of Comparison Instructors (instructors in comparable classes who did not use the HILT activities)
 - Data collection methods to measure effectiveness of the new HILT activities (post-activity)

Activity for Significant

• Goose in Sandals

Group Activity Two

"Problem" words in Introductory Statistics

What word(s) used in introductory statistics do you think students struggle in understanding the statistical meaning of?

- Identify the word(s) using the chat feature
- Raise hand to be unmuted

oFLC 2.0: Proposed Plan

• <u>Summer 2018</u>

- Identify participants; determine availability to "regularly" meet (biweekly?) during the 2018 2019 academic year
- Further brainstorm ideas for new words of interest
- <u>Fall 2018</u>
 - Identify new words of interest; collect data from students regarding their understanding of the non-statistical meanings of the words
 - Discuss classroom usage of existing HILT activities
 - Develop new HILT activities for use in subsequent term
 - Understand institutional IRB requirements

Winter/Spring 2019

- Use new HILT activities in classrooms
- Identify colleagues whose students can serve as comparison students
- Submit IRB protocols
- Collect end-of-term data (from students taught by HILT Instructors or Comparison Instructors) regarding student understanding of the statistical meanings of the words of interest

oFLC 2.0

- Would you like to be part of the HILT-LAS oFLC 2.0?
- Please contact:
 - Neal Rogness
 - <u>rognessn@gvsu.edu</u>
- or
- Jennifer Kaplan
- jkaplan@uga.edu

Development of Wikispace

To share the collection of HILT Activities and classroom videos showing how activities might be incorporated into classes

<u>http://hilt-statistics.wikispaces.com/</u>

Wiki Home 🚠 Projects + 💿 Recent Changes 🖹 Pages and Files + 🏝 Members + 🔹 Settings 🚺 Vikis Help Sign Ou HILT-statistics	
Welcome to HILT statistics: a project to design High Impact activities that require Little Time	mnemonic image Vocabulary for the Scale Parameters
Lexical Ambiguity	edit navigation
Did you know?	
The use of a specialized vocabulary with a novice in a domain creates a "mystique" about the subject (Lemke, 1990). Furthermore, the use of specialized language that a subject that can only be mastered by geniuses.	is unfamiliar to the student portrays the subject as more difficult than it is,
People connect what they hear to what they have heard and experienced in the past (Lemke, 1990; Konold, 1995) so if a commonly used English word is used differenti class may incorporate the technical usage as a new facet of the features of the word they already know.	tly by a technical domain, the students hearing the word for the first time in
Domain-specific words that are similar to commonly used English words but have different meanings in statistics are said to have lexical ambiguity (Barwell, 2005)	
Lexical ambiguity and the acquisition of a linguistic register associated with a field has been shown to create problems for learners in science (Garvin-Doxas & Klymkows Pilon, 1973), and statistics (Kapian et al., 2009, 2014; Lesser et al., 2009, 2013; Makar & Confrey, 2005).	vsky, 2008; Lemke, 1990), mathematics (Durkin & Shire, 1991b; Shulitz &
There are some easy ways to address lexical ambiguity in the classroom . Instructors can	
 preempt difficulties by careful use of language in their teaching (Albert, 2003; Lesser et al., 2009; Rangecroft, 2002). be aware of students' everyday use of lexically ambiguous words and address the differences in meaning explicitly in the classroom (Lavy & Mashiach-Eizenberg representations (Lesser et al., 2009, 2013) and by exploiting the differences between the uses (Adams et al., 2005). help students to build their voices in the technical domain (Adams et al., 2005, Durkin & Shire, 1991a, Lemke, 1990), through vocabulary activities and writing as: 2013). 	
Some words that have been shown to be lexically ambiguous are random, spread, association, independence, normal, average, and bias.	

References

- 1. Roth, W. M., (2005). *Talking Science: Language and Learning in Science Classrooms*. Lanham, MD: Rowman & Littlefield Publishers, Inc.
- 2. Brown, B. A. & Ryoo, K. (2008). Teaching science as a language: A "content-first" approach to science teaching. Journal of Research in Science Teaching, 45(5), 529 – 553.
- 3. Lemke, J. (1990). *Talking science: Language, learning and values*. Norwood, NJ: Ablex Publishing Corporation.Rector et al. (2013)
- 4. Rector, M., Nehm, R.H., & Pearl, D. (2012).-Learning the language of Evolution:-Lexical ambiguiuty and word meaning in student explanations.-Research in Science Education, DOI: 10.1007/s11165-012-9296-z.
- 5. Brown, B.A. (2006). "It Isn't No Slang That Can Be Said about This Stuff": Language, identity, and scientific discourse. *Journal of Research in Science Teaching*, 43(1), 96 126.
- 6. Neibert, Kai, Marsch, S. & Treagust, D.F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. *Science Education*, *96*(5), 849 877.
- 7. Barwell, R. (2005). Ambiguity in the mathematics classroom. Language and Education 19(2), 118–126.
- 8. Garvin-Doxas, K., & Klymkowsky, M. W. (2008). Understanding randomness and its impact on student learning: Lessons learned from building the Biology Concept Inventory (BCI). *CBE Life Sciences Education*, 7(2), 227–233.
- 9. Durkin, K., & Shire, B. (1991). Primary school children's interpretations of lexical ambiguity in mathematical descriptions. *Journal in Research in Reading*, 14(1), 46–55.
- 10. Shultz, T. & Pilon, R. (1973). Development of the ability to detect linguistic ambiguity. *Child Development*, 44(4), 728 733.
- 11. Kaplan, J.J., Fisher, D. & Rogness, N. (2009). Lexical Ambiguity in Statistics: What do students know about the words: association, average, confidence, random and spread? *Journal of Statistics Education*, 17 (3). http://www.amstat.org/publications/jse/v17n3/kaplan.html
- 12. Kaplan, J.J., Rogness, N. & Fisher, D. (2014). Exploiting Lexical Ambiguity to Help Students Understand the Meaning of *Random. Statistics Education Research Journal*, 22(1).
- 13. Lesser, L., & Winsor, M. (2009). English language learners in introductory statistics: Lessons learned from an exploratory case study of two pre-service teachers. *Statistics Education Research Journal*, 8(2), 5–32. <u>http://iase-web.org/documents/SERJ/SERJ8(2)</u> Lesser Winsor.pdf

References

- 14. Lesser, L.M., Wagler, A.E., Esquinca, A. & Valenzuela, M.G. (2013). Survey of native English speakers and Spanish-speaking English language learners in tertiary introductory statistics. *Statistics Education Research Journal*, 12(2), 6 – 31. <u>http://iase-web.org/documents/SERJ/SERJ12(2)_Lesser.pdf</u>
- 15. Makar, K. & Confrey, J. (2005). "Variation-talk": Articulating meaning in statistics. *Statistics Education Research Journal*, 4(1), 27–54. <u>http://iase-web.org/documents/SERJ/SERJ4(1)_Makar.pdf</u>
- 16. Brown, B.A. & Spang, E. (2008). Double talk: Synthesizing everyday and science language in the classroom. *Science Education*, 708 732.
- 17. Lavy, I., & Mashiach-Eizenberg, M. (2009). The interplay between spoken language and informal definitions of statistical concepts. *Journal of Statistics Education*, 17(1), http://www.amstat.org/publications/jse/v17n1/lavy.html
- 18. Rangecroft, M. (2002). The Language of Statistics. *Teaching Statistics*, 24(2), p 34 37.
- 19. Adams, T. L., Thangata, F., & King, C. (2005). 'Weigh' to go: Exploring mathematical language. Mathematics Teaching in the Middle School, 10(9), 444 – 448.
- 20. Zieffler, A., Park, J., Garfield, J., delMas, R. & Bjornsdottir, A. (2012). The Statistics Teaching Inventory: A survey on statistics teachers' classroom practices and beliefs. *Journal of Statistics Education*, 20 (1), <u>http://www.amstat.org/publications/jse/v20n1/zieffler.pdf</u>

Significant Activity Graphics:

- Significant Other: <u>https://www.acast.com/significantother</u> and <u>https://www.rover.com/blog/quiz-love-dog-significant/</u>
- Crowd: <u>https://www.billboard.com/articles/business/6327747/firechat-may-soon-solve-your-texting-woes-at-crowded-events</u>
- Pyramids: https://images.pexels.com/photos/71241/pexels-photo-71241.jpeg
- Olympic stairs: <u>https://pixabay.com/en/olympiad-winning-stairs-olympia-261636/</u>
- Goose: <u>https://www.pinterest.com/pin/68257750572641601/</u>

Project Team Publications (for additional information)

- Kaplan, J.J., Fisher, D. & Rogness, N. (2009). Lexical Ambiguity in Statistics: What do students know about the words: association, average, confidence, random and spread? *Journal of Statistics Education*, 17 (3). <u>http://www.amstat.org/publications/jse/v17n3/kaplan.html</u>
- Kaplan, J.J., Fisher, D. & Rogness, N. (2010). Lexical Ambiguity in Statistics: How students use and define the words: association, average, confidence, random and spread. *Journal of Statistics Education*, 18(2), <u>http://www.amstat.org/publications/jse/v18n2/kaplan.pdf</u>
- Kaplan, J., Rogness, N., & Fisher, D. (2012). Lexical ambiguity: Making a case against spread. *Teaching Statistics*, 34(2), 56-60
- Kaplan, J., Haudek, K., Ha, M., Rogness, N., & Fisher, D. (2014). Using Lexical Analysis Software to Assess Student Writing in Statistics. *Technology Innovations in Statistics Education (TISE), 8*(1)
- Kaplan, J., Rogness, N., & Fisher, D. (2014). Exploiting Lexical Ambiguity to Help Students Understand the Meaning of Random. *Statistics Education Research Journal*, 13(1), 9-24
- Kaplan, J.J. & Rogness, N. (2018). Increasing statistical literacy by exploiting lexical ambiguity of technical terms. *Numeracy*, *11*(1). https://doi.org/10.5038/1936-4660.11.1.3

Thank You!

oFLC 1.0 Instructors: Josh Daniel, Barbara Dolansky, Beverly Wood

GVSU HILT Instructors:

Becky Bergakker, Jackson Fox, Lori Hahn, Eric Helmholdt, Mary Luttenton, Trish Stephenson

GVSU Undergraduate:

Joe McCartney

UGA Graduate Students:

Gabe Hinton, Oguz Koklu, Alex Lyford, Krista Varanyak, Beatrice Zhang

NSE

What are the chances?

Understanding the meaning of **significant** in statistics

The word **significant** can have several meanings in everyday conversation.

special or important...

large or noticeable...

There was a significant crowd at the concert.

important or noteworthy...

Monuments are built to commemorate a **significant** person or event.

excellent, unusually good, or of a high standard...

A medal in the Olympics is a **significant** achievement.

The word **significant** has a different meaning in statistics.

In statistics, significant means...

...unlikely to happen by chance

