moderndive: statistical inference via the tidyverse

Albert Y. Kim

Jordan Moody

Ziwei "Crystal" Zang

Starry Zhou

USCOTS 2019 State College PA May 15-16

Chapter 7: Multiple regression

- 1. What are we doing ?
 - <u>Descriptive</u> multiple regression & regression with 1 num & 1 categ x.
- 2. Why are we doing this 🧐
 - Baby's first model selection!
 - Occam's Razor between interaction and parallel slopes model
- 3. Our opinions
 - Equation for fitted values w/ indicator functions is $\widehat{\mathbf{W}}$
 - [1 num & 1 categ x] is more important than [2 num x]
- 4. Potential pitfalls 🔔
 - Interaction model: interpreting offsets in intercept + differences in slope
 - How to plot parallel slopes model

Chapter 8: Sampling

Goal 1: Sampling for Inference

1. Tactile Sampling → 2. Virtual Sampling → 3. Theoretical Console -/ > library(moderndive) > bowl # A tibble: 2,400 x 2 ball_ID color <int> <chr> 1 white Population 2 white 3 white 4 red 5 white 6 white 7 red 8 white 9 red 10 white with 2,390 more rows > Console -/ Sampling > bowl %>% Inference + rep_sample_n(size = 50, reps = 1) # A tibble: 50 x 3 # Groups: replicate [1] replicate ball_ID color <int> <int> <chr> 226 white 1304 red Sample 1230 white 984 white 68 white 1965 white 431 white 1184 white 1610 red 978 white 1 . with 40 more rows Distribution of 1000 proportions red 300 Sampling 200 -**Distributions &** Standard Errors 100 p(1-p)SE =015 02 035 03 035 04 Proportion red of 50 balls 0 0.2 0.3 0.4 0.5 0.6 Proportion of 50 balls that were red

1. What are we doing ?

- Studying effect of sampling variation on estimates
- Studying effect of sample size on sampling variation
- 2. Why are we doing this 🧐
 - So students don't get lost in abstraction & never lose
 on what statistical inference is about.

3. Our opinions

- Have some mental anchor for all statistical inference: tactile sampling exercise
- 4. Potential pitfalls 🔔
 - Terminology, notation, & definitions related to sampling

Terminology, definitions, & notation

My approach: Do this first...

Terminology, definitions, & notation

Then this...

TABLE 8.6: 5	Scenarios	of samplir	ng for	inference
--------------	-----------	------------	--------	-----------

Scenario	Population parameter	Notation	Point estimate	Notation.
1	Population proportion	p	Sample proportion	\hat{p}

Terminology, definitions, & notation

Then this... Then generalization & transference...

TABLE 8.6: Scenarios of sampling for inference

Scenario	Population parameter	Notation	Point estimate	Notation.		
1	Population proportion	p	Sample proportion	\hat{p}		
2	Population mean	μ	Sample mean	$\widehat{\mu}$ or \overline{x}		
3	Difference in population proportions	p_1-p_2	Difference in sample proportions	${\hat p}_1 - {\hat p}_2$		
4	Difference in population means	$\mu_1-\mu_2$	Difference in sample means	$\overline{x}_1 - \overline{x}_2$		
5	Population regression slope	eta_1	Sample regression slope	${\widehat eta}_1$ or b_1		
6	Population regression intercept	eta_0	Sample regression intercept	${\widehat eta}_0$ or b_0		

From moderndive Ch 8.5.2

Chapter 9: Confidence Intervals

- 1. What are we doing ?
 - Introducing bootstrap REsampling
 - Constructing confidence intervals
- 2. Why are we doing this 🧐
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in Cl's?
- 3. Our opinions
 - Have some mental anchor for all statistical inference: tactile REsampling exercise
- 4. Potential pitfalls 🔔
 - "Bootstrap resampling distribution is an approximation to sampling distribution"
 - Population from a *superpopulation?*
 - Bridging gap with traditional formula-based methods

Chapter 10: Hypothesis Testing

- 1. What are we doing ?
 - Introducing permutation REsampling
 - Conducting hypothesis tests
- 2. Why are we doing this 🧐
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in HT's?
 - Convincing students there is only one test
- 3. Our opinions
 - I hate hypothesis testing, but they are still widely used
- 4. Potential pitfalls 🔔
 - Terminology, notation, & definitions related to HT
 - Bridging gap with traditional formula-based methods

infer package for tidy statistical inference

http://infer.netlify.com/

hypothesize(null) %>% generate(reps) %>% calculate(stat) %>% visualize()

Chapter 11: Inference for Regression

Goal 2: Modeling with Regression 2. Exploratory Data Analysis 1. Data

	evals ×	🕆 Filter				5 -	::	•							
	1D	e score e	age	gender 🔅				•			÷ .				
	1 1	4.7	36	female							3 T				
	2 2	4.1	36	female							•	. .			
	3 3	3.9	36	female		2									
	4 4	4.8	36	female		000							Gender		
	5 5	4.6	59	male		DC .		I					🔶 female		
	6 6	4.3	59	male		chit		•			•	<u> </u>	🔸 male		
	7 7	2.8	59	male		Teaching Score	•				2				
	8 8	4.1	51	male			•	1	•	· .:					
	9 9	3.4	51	male		3 -		•							
	10 10	4.5	40	female						• •					
	11 11	3.8	40	female											
	12 12	4.5	40	female											
3. Regres	SIC	n C	0ر	en	\sim	\sim			4.1	≺eg	ress	Sior	ר ו	able	Э
Console ~/ 🖘					San	npling	a //		Console ~/ 🔿						
<pre>> score_model <- lm(score ~ > get_regression_table(score # A tibble: 4 x 7 term</pre>		-	data =	evals)	Cor	of Int's & Test	s	→	<pre>> score_model <- > get_regression_ # A tibble: 4 x 7 term</pre>	table(scor					upper_ci <dbl> 5.29 -0.009 0.076 0.024</dbl>
									>						

- 1. What are we doing ?
 - Getting students to interpret regression thru an inferential lens
 - Worth doing resampling for regression? I'm not sure.
- 2. Why are we doing this 🤪
 - Convince students what needs to happen in real life (IRL) when you have <u>only one sample</u>
 - Where is sampling variation in regression?
- 3. Our opinions
 - Use EDA + get_regression_points() to do your own residual analysis, not base::plot(model)
- 4. Potential pitfalls 🔔
 - "Does R use simulation or a formula for p-values/CI's in a regression table?"

Conclusion

Starting Small: Some Suggestions

- Ch6: Use get_regression_table() instead of summary()
- Ch5 + Ch2: Publish (non-sensitive) data to .csv via Google Sheets and import with read_csv().
- Ch3: Spend time covering <u>Grammar of Graphics</u> & do all plots in course via <u>ggplot2</u>
- Ch8 + Ch5 + Ch3: Use data frame + %>% + rep_sample_n() to make a visualization of a sampling distribution from scratch!
- Ch5: Have them do an EDA via group_by() %>%
 summarize() to get two means + two-sample t-test
- Ch3 + Ch5 + Ch10: Jump straight into infer package

Resources

- Always two versions of moderndive available
 - 1. Development version (being edited): <u>moderndive.netlify.com</u>
 - Latest release (updated x2 per year): <u>moderndive.com</u>
- On GitHub at <u>github.com/moderndive/</u>
 - 1. <u>bookdown</u> source code for book
 - 2. moderndive package source code
- Join our mailing list at <u>eepurl.com/cBkltf</u>

Timeline

- Now: Development version on <u>moderndive.netlify.com</u> being edited:
 - Ch9 on CI, Ch10 on HT need cleaning
 - #Ch11 on inference for regression ##
- **Mid-June**: Preview of print edition available on moderndive.com
- Late-July: Posting labs/problems sets & example final project samples
- Fall 2019: Print edition available!

The R Series

Thank you!