

Main idea

Meta-analysis is a widely used quantitative method in the behavioral sciences for synthesizing research and informing policy and interventions.

ASA Undergraduate Curriculum Guidelines emphasize:

- Data science and statistical computing
- Working with real data
- Diverse approaches to statistical models
- Communicating complex findings to laypeople
- Building relationships with allied disciplines

Meta-analysis incorporates these goals into a course or module learning experience.

Meta-analysis is a vehicle for statistics programs to intersect with behavioral science programs and audiences.

This poster presents the **learning goals**, content modules, and types of assignments in an undergraduate metaanalysis course.

Reaching out to behavioral science audiences via meta-analysis

Bruce Blaine, Statistics and Data Sciences Program, St. John Fisher College

	Experimental				Control					١			
Study	Total	Mean	SD	Total	Mean	SD		Меа	an Difference	MD	959	%-CI	
Edinburgh	155	55.00	47.0000	156	75.00	64.0000		_		-20.00	[-32.47; -	7.53]	
Orpington-Mild	31	27.00	7.0000	32	29.00	4.0000				-2.00	[-4.83;	0.83]	
Orpington-Moderate	75	64.00	17.0000	71	119.00	29.0000	←			-55.00	[-62.77; -4]	7.23]	
Orpington-Severe	18	66.00	20.0000	18	137.00	48.0000	←			-71.00	[-95.02; -4	6.98]	
Montreal-Home	8	14.00	8.0000	13	18.00	11.0000				-4.00	[-12.15;	4.15]	
Montreal-Transfer	57	19.00	7.0000	52	18.00	4.0000				1.00	[-1.12;	3.12]	
Newcastle	34	52.00	45.0000	33	41.00	34.0000				→ 11.00	[-8.06; 3	0.06]	
Umea	110	21.00	16.0000	183	31.00	27.0000				-10.00	[-14.92; -	5.08]	
Uppsala	60	30.00	27.0000	52	23.00	20.0000			-	+→ 7.00	[-1.73; 1	5.73]	
Fixed effect model	548			610					\$	-3.46	[-4.96; -	1.96] 1	
Random effects mode Heterogeneity: 1 ² = 97%,	_	1001 n	< 0.01							-13.98	[-24.03; -3	3.93]	
1 = 0170,	ι <u>- 20</u> 5.	4034, p	~ 0.01			-	50	-40 -3	0 -20 -10	0 10			

Content modules What can be taught in a metaanalysis course?

Library research tools

Effect size statistics and their standard error estimates

- SMDs

Meta-analytic statistics and methods

Assignments What can students do in a meta-analysis course?

Data analytic assignments

- Work with effect size statistics
- Fit and evaluate meta-analytic models
- Meta-regression with quantitative and categorical predictors

Literacy assignments

- PICO, database, and search exercises
- Scraping design and treatment effect data from primary studies.
- Summarize a meta-analytic review
- Assessing primary study quality with Cochrane Collaboration assessment tool

Disciplinary research assignments

Assignments comprising a meta-analytic project on a disciplinary question of interest

Databases and search tools for study search and retrieval Study quality assessment tools

OR/RR Correlation coefficients

Fixed/random/mixed effects models Heterogeneity statistics Meta-regression Bias and sensitivity analyses Graphical tools for meta-analysis