Individual Pathways and Resources to Adaptive Control Theory-Inspired Scientific Education (iPRACTISE)

Jungmin Lee, Jonathan J. Park, Ryan J. Voyack, Amo Zhang, Yang Gao, Dennis K. Pearl, Sy-Miin Chow

and other iPRACTISE members (see Acknowledgements)

The Pennsylvania State University

iPRACTISE - What Is It?

iPRACTISE is a digital education system that provides personalized training and testing as guided by user input and automated control theory algorithm.

- **Goals:**
 - Design a scalable prototype for iPRACTISE that can be used in undergraduate as well as graduate teaching of statistics
 - Compare the results of personalized training to uniform training in traditional classroom settings

Why Personalized Education?

- **Heterogeneity in Students’ Knowledge:**
 - The diversity in student preexisting knowledge and expertise has greatly limited the scope and depth of traditional data science training
 - Linear and uniform training modules preclude students who lack specific kinds of skills from entry into certain training or career paths
 - Homogeneous solutions to heterogeneous student body is inefficient and may serve no one well

- **Explosiveness in Un-Navigated Materials:**
 - The digital age has allowed for unlimited sharing of training contents
 - Selection of appropriate training modules that fit an individual’s current ability and learning goal is similar to “finding needle in a haystack”

User Interface of iPRACTISE

To see a demo go to: https://tinyurl.com/iPRACTISE-Demo

- **Student View:** Computerized Assessment
 - Set point, desired speed
 - Discrepancy
 - Gas Pedal
 - Controller
 - Output
 - CO signal
 - User uptake
 - R knowledge

- **Instructor View:** Constructing Course
 - Individual Ability
 - Computerized adaptive test
 - Training goals specification
 - Training recommendations

References

Conclusions

- Individual components of iPRACTISE (e.g., item bank, control theory algorithm) will be shared with the broader research community

- iPRACTISE system could be adapted for application to a wide array of educational settings, and has the potential to serve as a model for the future of personalized digital instruction

Acknowledgements

This research is funded by NSF Innovations in Graduate Education grant (DGE-1806871), Penn State University Strategic grant, and a pilot grant from the Center for Individual Opportunity (PI: Chow).

Other iPRACTISE team members who have contributed to this research include: Dongjin Yeo, Peter Molenaar, Paula Lei, Matthew Beckman, Eric Nord, Michael Halfin, Nilam Rana, Zita Oravecz, Tim Brick, Rick Gilmore, Guangqing Chi, Kathryn Drager, Michael Russell, Michael Rutter, Murali Hanum, David Hunter, Kay Wijekumar, James Lebreton, and Douglas Tret.

Additional thanks to the PSU Human Development and Family Studies department and QuantDev group of Penn State.

Additional Resources

[Image 1](https://example.com/image1)

[Image 2](https://example.com/image2)

[Figure 1: Cruise Control Analogy](https://example.com/figure1)

[Figure 2: iPRACTISE in Application](https://example.com/figure2)

[Figure 3: Example Assessment Items for Adaptive Test](https://example.com/figure3)

[Figure 4: Example Tree: Learning Basics in R](https://example.com/figure4)

[Figure 5: Illustration of CAT](https://example.com/figure5)