The Evolution of AP® Statistics: How Big Data and Machine Learning Are Changing the Course

2008-2019 Timeline

- **2008**
 - Typical Data File (9 observations, 4 variables)
 - Data & Technology Project
 - CATALYSTS FOR CHANGE
 - Workshops (Darren Starnes and Floyd Bullard)
 - Emphasized the important role of simulations to anchor key statistical concepts
 - CURRICULUM CONTENT
 - Introduced simulations into curriculum across curricular elements
 - PROJECT
 - 2008

- **2009**
 - Industry Initiatives for Math and Science Education (Summer Internship)
 - Developed unit to introduce students to JMP – Penn State dataset: 227 observations, 8 variables
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Introduced Year-long statistics project – Literature review and analysis activity in the fall; data gathering and data analysis in the spring
 - PROJECT
 - 2009

- **2010**
 - Sabbatical Research on Statistical Literacy
 - Big data, importance of statistical literacy, introduced JMP more formally to students
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Conducted a review of statistical software; R was widely used but had too steep a learning curve; Excel did not support the range of statistical analysis activities; JMP chosen as the best tool based on functionality, ease of use, and cost
 - PROJECT
 - 2010

- **2011**
 - Statistics Integration Grant
 - Outgrowth of sabbatical research, impact on student preparation for AP stats; increased knowledge of descriptive statistics in grades 6-10
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Revised teaching of Statistical inference; used a holistic approach and encouraged students to look at the similarities across both tests for proportions and tests for means; Student understanding of the tests improved by focusing on common elements and difference between tests
 - PROJECT
 - 2011

- **2012**
 - Introduce Census at School data to teach basic data analysis skills (838 observations, 60 variables)
 - Most projects were student surveys or experiments; a couple of student did analysis projects with outside organizations
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Less time on descriptive statistics – students were better prepared as a result of greater statistical literacy
 - PROJECT
 - 2012

- **2013**
 - Increasing availability of public data; Students (with support) can begin to combine data from different sources
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Provided additional scaffolding for project; reviewed drafts of most major elements before final submission; Not sustainable with larger student population
 - PROJECT
 - 2013

- **2014**
 - Research module on machine learning
 - Realized the central role of linear and logistic regression in machine learning
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Introduced FARS (Fatality Analysis and Reporting System) data for student analysis; Data on 5 years of traffic fatalities in the US; all students required to work with this dataset (378,000 observations, 24 variables); Students to determine own research question and use JMP to analyze; insufficient teacher support for JMP
 - PROJECT
 - 2014

- **2015**
 - Elective course on Artificial Intelligence
 - Many classifiers require knowledge of statistical techniques
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Added data analysis unit that focused on teaching students how to use JMP for data analysis; unit culminates with analysis of FARS data
 - PROJECT
 - 2015

- **2016**
 - Fatality Analysis: Number of Accidents Involving Drunk Driving per 100 accidents For Holidays and Non-Holidays Over Time
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Work with data in the cloud?
 - PROJECT
 - 2016

- **2017**
 - Big data and machine learning will influence future course content
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Continue work with large datasets (>10,000 observations) requires more critical analysis of results; introduce effect size calculation?
 - PROJECT
 - 2017

- **2018**
 - Focus on understanding the data
 - Data & Technology Project
 - CURRICULUM CONTENT
 - Projects promote authentic learning and provide critical analysis skills
 - PROJECT
 - 2018

- **2019**
 - Emphasize working with data subsets and validating results on different subsets
 - Data & Technology Project
 - CURRICULUM CONTENT
 - More future projects will be data analysis projects
 - PROJECT
 - 2019

FUTURE DIRECTIONS

- **CURRICULUM CONTENT**
 - Big data and machine learning will influence future course content
 - Supervised Learning classifiers are key – linear regression (multivariate) is common for prediction problems and logistic regression is common for classification problems; students should understand the basics of both of these approaches
 - Computers do the mechanics of all statistics tests; Should the future direction focus more on the value humans can add to the tests:
 - » Understand your data
 - » Constructing hypotheses
 - » Checking conditions
 - » Interpreting results
 - Inference with large datasets (>10,000 observations) requires more critical analysis of results; introduce effect size calculation?

- **TECHNOLOGY AND DATA**
 - Continue work with large datasets (50,000+ observations, many variables)
 - Focus on understanding the data
 - Emphasize working with data subsets and validating results on different subsets
 - Work with data in the cloud?

- **PROJECTS**
 - Projects promote authentic learning and provide critical analysis skills
 - Most future projects will be data analysis projects
 - Having a project stakeholder who cares about results is valuable; need a sustainable model for doing this
 - Students still want to take data at face value without considering how the data was produced or generated; how do we change this attitude?
 - Projects are time intensive to review; need to consider models that are scalable