### The Hypothesis Testing Paradox or Why Effect Sizes are Important for Evaluating Evidence

Professor Emerita Jessica Utts Department of Statistics University of California, Irvine USCOTS 2019

### **Replicating Research Findings**

New NAS report, 2019 (Preprint) <u>Reproducibility and Replicability in Science:</u>

- "For this report: *Replicability* is obtaining consistent results across studies aimed at answering the same scientific question, each of which has obtained its own data. (p. 36)"
- "One type of scientific research tool, statistical inference, has an outsized role in replicability discussions due to the frequent misuse of statistics and the use of a *p*-value threshold for determining "statistical significance." (Summary, bullet #7)"

#### I've argued against "statistical significance = successful replication" for a long time!



Notice the date:

1988!

### **Effect Size Examples**

- Test for one population mean:
  - Effect size measures how far true parameter value is from null value, usually in # of standard deviations
- Comparing two population means:
  - Effect size measures difference in means, usually in # of standard deviations for one group
- Example: Average heights for males and females differ by about 5 inches, which is about twice the standard deviation for each sex. So the effect size is about 5/2.5 = 2 (a very large effect)

Example: Are female college students taller than their mothers?

- n = 93 pairs (daughter mother height)
  - mean difference = 1.3 inches
  - standard deviation = 2.6 inches
- Effect size is 1.3/2.6 = 0.5 (moderate effect)
- Test statistic is  $t = \sqrt{93} \times 0.5 = 4.8$ , *p*-value  $\approx 0$
- Relationship between t and e.s.

$$t = \sqrt{n} \left(\frac{\bar{x} - \mu_0}{s}\right)$$
  $e.s. = \frac{\bar{x} - \mu_0}{s}$   $t = \sqrt{n} \times e.s.$ 

# Hypothesis testing paradox:

A researcher conducts a test with n = 100 and gets these results:

• 
$$t = \sqrt{100} \left(\frac{\bar{x} - \mu_0}{s}\right) = 2.50$$

- *p*-value = 0.014, reject null hypothesis
- Just to be sure, the researcher decides to repeat the experiment with n = 25

## Hypothesis testing paradox:

• Uh-oh, the results show:

• 
$$t = \sqrt{25} \left(\frac{\bar{x} - \mu_0}{s}\right) = 1.25$$

- *p*-value = 0.22, cannot reject null!
- The effect has disappeared!

• To salvage, researcher decides to combine data:

*n* = 125

Finds 
$$t = \sqrt{125} \left(\frac{\bar{x} - \mu_0}{s}\right) = 2.795$$
, *p*-value = 0.006!

The effect is stronger than the first time!

## Hypothesis testing paradox:

- Paradox: The 2<sup>nd</sup> study *alone* did <u>not</u> "replicate" the finding, but when *combined* with 1<sup>st</sup> study, the effect seems <u>even stronger</u> than 1<sup>st</sup> study!
- Defining "replication" as getting statistical significance each time, or on the basis of *p*values, makes no sense! Yet, it's very common practice in many disciplines.

## What's going on?

| Study    | n   | Effect size | $t = \sqrt{n} \times e.s.$ | P-value |
|----------|-----|-------------|----------------------------|---------|
| 1        | 100 | 0.25        | 2.50                       | 0.014   |
| 2        | 25  | 0.25        | 1.25                       | 0.22    |
| Combined | 125 | 0.25        | 2.795                      | 0.006   |

- In all 3 cases the effect size is the same, 0.25.
- But the test statistic and *p*-value change based on the sample size, with  $t = \sqrt{n} \times (\text{effect size})$ .

## Why Effect Sizes are Important

- Unlike *p*-values, they don't depend on sample size (but accuracy of estimating them does).
- They are a measure of the true effect or difference in the population = practical importance!
- Replication should be defined as getting approximately the same effect size, *not* as getting approximately the same *p*-value!