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The Committee on Statisticians in Defense and National Security of the American Statistical
Association is pleased to announce the establishment of an annual prize for the best student
paper applying statistics to defense issues.   

The prize competition is open to any undergraduate or graduate student enrolled in an
American institution of higher education.  The paper must have been written in the preced-
ing academic year (for this year's prize, July 1, 2000 to June 30, 2001).  The paper must be
nominated and submitted by a faculty member at the institution.  Papers are limited to
10,000 words or 40 pages, including graphics.   Student theses meeting these length require-
ments are acceptable.

Papers will be judged on the quality of the statistical work, the quality of the written pres-
entation, and the significance of the contribution to understanding of defense issues.

For 2001, nominations and three copies of the paper should be submitted to
Professor Dave Olwell, Department of Operations Research, Code OR/OL, Naval
Postgraduate School, Monterey, California, by 1 July 2001. Questions should also
be addressed to Professor Olwell (dholwell@nps.navy.mil). The prize announce-
ment will be made at the annual JSM meetings.

PRIZE 
COMPETITION 
for the 

BEST STUDENT PAPER 

applying STATISTICS 

to DEFENSE ISSUES

For 2001, the prize consists of a plaque and $500.
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This is my last column, as Editor of STATS. The 
American Statistical Association establishes a 
committee to select a new Editor every three 

years. The new editor should be selected by April 15, 
2001. He or she will then establish a new Editorial 
Board. A new and fresh perspective to STATS: The 
Magazine for Students of Statistics will begin again. I look 
forward to reading future issues of STATS and the con-
tinuing development of this magazine. We, the Editor 
and Associate Editors, have invested considerable time 
and effort in the magazine and its success is paramount. 
As Editor, I want to take this opportunity to thank the 
many people, who made STATS a success over the last 
three years.

The Associate Editors have worked tirelessly on behalf 
of the magazine. They have contributed greatly to the 
changes in STATS over the last three years. They contrib-
ute columns to each issue, review submitted manuscripts, 
and often solicit manuscripts from prospective authors. 
Bob Stephenson has been a member of the Editorial Board 
for twelve years and has produced the AP STATS column 
for the last three years. This column has been a great addi-
tion to the magazine in that the needs of new audiences of 
statistics students and teachers, especially at the pre-colle-
giate level, have been addressed. Allan Rossman has con-
tributed many lively inquiries to the Outliers’ column. I 
must confess that I look forward to receiving his contribu-
tions to each new issue and I read his column first. I still 
enjoy working the assignments. Jackie Dietz has edited the 
Student Voices’ column and has mentored several students 
in the publishing process. 

Beth Chance and Rudy Guerra have been major solici-
tors of new material for STATS. They have carefully 
reviewed other submissions, and provided sage commen-
tary on the direction of STATS. Several of the personal pro-
files that appeared under the column, “A Day in the Life of 
a Statistician,” were responses to inquiries from Beth 
Chance. The last member of the editorial board is Bob 
Mason, who is a candidate for the President-Elect of the 
American Statistical Association. Bob has been such a 
strong advocate for STATS and its mission of continuing 
outreach to each new generation of students. Bob has been 
involved with STATS since its inception more than a 
decade ago. We wish him well in his attempt for the posi-

tion of President-Elect.
I also thank the ASA office and in particular, Mary 

Fleming and Megan Murphy for their support of STATS. 
You can also see their influence in the new cover and 
internal style for STATS. Mr. Peter Lindeman of Oakland 
Street Publishing has greatly reduced the process of turn-
ing manuscripts into magazines. He has been extremely 
responsive to the rapidly changing nature of the magazine. 
So there are many people who are responsible for the 
magazine.

In this issue, we have an eloquent tribute to the life of 
Lucien Le Cam by David Brillinger and Grace Yang. They 
trace the statisticien extraordinaire’s many contributions 
that span almost half a century. Tom Moore and Vicki 
Bentley-Condit provide a primer on Permutation Tests 
with an application to infant handling by female baboons. 
These primers have been a feature that we introduced to 
meet requests by both our student and faculty readership. 
Jimmy Doi contributes another Student Voice column on 
the NSF/Monbusho summer programs in Japan, Korea, 
and Taiwan. Follow Jimmy’s eight-week program and get 
a glimpse of our field of research in a foreign setting and 
his exposure to a completely new language and culture. 
Perhaps you will follow Jimmy and consider this wonder-
ful opportunity for statistics graduate students. Thomas 
Gwise contributes a Student Project column and takes a 
brief look at the intersection of statistics and gamma spec-
troscopy by discussing the properties of gamma counting. 
Read this brief introduction to gamma spectroscopy to see 
why Tom says that this little corner of the physics world is 
almost all probability and statistics.

In Roxy Peck’s AP STATS column, she provides us with 
another update on the AP STATS exam. Last May, a stag-
gering number of 34,500 students took the AP STATS 
exam. The phenomenal growth in the popularity of the 
exam highlights the fact that statistics is rapidly being 
incorporated into the mainstream of the pre-college cur-
riculum.

Editor’s Column

Jerome P. Keating
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The mathematical statistician’s mathematical 
statistician, the student’s protector and one 
of the gentlemen of statistics, Lucien Marie 

Le Cam died April 25, 2000 in the San Francisco 
Bay Area, his home for fifty years. He was 75 years 
old.

Professor Le Cam was born 
into a Breton farm family on 
November 18,  1924.  He 
graduated from a Catholic 
boarding school in the early 
years of World War II. He 
attended a seminary for exactly 
one day. (Details of that event 
may be found in Yang (1999).) 
A f t e r  t h a t  h e  a t t e n d e d 
mathematics courses at a lycée 
in Clermont-Ferrand and stayed 
there for two years before 
registering as a student at the 
University of Paris in 1944. He 
obtained the Licence des 
Sciences from that university in 
1945. Luckily, the War did not 
affect his education too much, 
for he “managed’’ to fail the 
physical examination thereby 
avoiding the draft by the 
G e r m a n s  d u r i n g  t h e i r 
occupation of France.

For the following five years 
he worked at Electricité de France researching how 
to operate dams effectively and how to estimate 

risk probabilities of droughts and floods. 
In 1950 he came to the University of California in 

Berkeley at the invitation of Jerzy Neyman as an 
Instructor for a year. Neyman urged him to stay on to 
work for a Ph.D. So, Lucien became a graduate 

student his second year at 
Berkeley after being an Instructor 
the first year! For those years he 
showed much amusement in 
telling the story of failing the 
Ph.D. Qualifying Exam in 
Mathematics on his first attempt. 
(That story is also related in Yang 
(1999).) He received a Ph.D. in 
1952 writing a thesis titled “On 
Some Asymptotic Properties of 
Maximum Likelihood and 
Related Bayes’ Estimates” under 
the supervision of Jerzy Neyman.

H e  w a s  a p p o i n t e d 
A s s i s t a n t  P ro f e s s o r  o f 
Mathematics at Berkeley in 
1953 eventually becoming 
Professor of Statistics in 1960. 
During the year 1972-3 he was 
Director of the Centre de 
Recherches Mathématiques in 
Montreal, Canada; otherwise he 
remained at Berkeley, becoming 
Professor Emeritus in 1991.

He was Chair  of  the 
Berkeley Department of Statistics from 1961–5, 
Acting Director of the Statistical Laboratory and 
Co-Chair of the Biostatistics Group at other times. 
He co-edited with Jerzy Neyman and Elizabeth 
Scott the celebrated Proceedings of the Berkeley 
Symposia. He ran the Neyman Seminar in the years 
after Jerzy Neyman’s death in 1981 with panache 
and civility. Following Neyman’s tradition, Lucien 
financed the weekly high tea for the seminar 
attendees and the drinks at the Faculty Club 
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Visiting the Lama Temple in Beijing, May 1985
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afterwards. The Berkeley years are further 
chronicled in Lehmann (1997).

Lucien obtained important honors in statistics: 
Honorary Degree of Doctor of Science from the 
Free University of Brussels in 1997, Fellow of the 
New York Academy of Sciences, Fellow of the 
American Academy of Arts and Sciences, Hotelling 
Lecturer and President of the Institute of 
Mathematical Statistics. In 1989 there was a 
symposium at Berkeley honoring his 65th birthday 
and in 1994 another at Yale honoring his 70th. The 
70th birthday celebration was preceded by a well-
attended week-long workshop and symposium on 
Lucien’s research and there was a Festschrift, that is 
a collection of papers written in his honor, Pollard 
et al (1997).

The Le Cam name lives on in Le Cam’s 
Lemmas, Lecamian rainfall models, Le Cam’s 
distance between experiments, Le Cam’s metric 
dimension, Le Cam’s one-step estimators (see 
below), Le Cam’s students; and his spirit remains 
in the many concepts he introduced including 
contiguity, tightness, LAN (Local Asymptotic 
Normal i ty) ,  d iscre t iza t ion of  es t imates , 
insufficiency, deficiency, and chaining.

Throughout the years his approach to research 
was strongly colored by the Bourbaki, a French 
series of mathematics books. These works were 
often viewed as excessively abstract, but Lucien 
defends that approach in Albers et al (1990) 
remarking:

“The abstract side has the virtue that you can 
simplify things, and when you simplify things, 
they appear more reasonable, clearer and so 
forth. But if you want to apply [statistics] you 
have to get down to the nitty-gritty and do 
things that might not be so simple.” 

Turning to some specifics of his research work, 
scientific researchers often come to statisticians 

because they are concerned with the efficiency of 
some natural estimate they are using or of some 
experiment they are designing. Professor Le Cam 
studied the efficiency of estimates and experiments 
and constructed simpler ones. He was concerned 
with systematically reducing complex statistical 
problems to simpler ones, often involving the 
normal distribution.

His specialties included statistical decision 
theory, large sample theory and approximations. Le 
Cam's works are summarized in his Magnum 
Opus, Asymptotic Methods in Statistics, (1986a). To 
quote some of his own words, Le Cam (1984):

“Asymptotic statistical theory is a body of 
limit or, better yet, approximation theorems 
used by statisticians to elude the intractability 
of all but the very simplest practical statistical 
problems and to obtain usable results.” 

To illustrate the spirit of this idea and his work 
consider his one-step estimator. It is very 
applicable and is often easy to compute. The 
general setup is the following:

Suppose {X1, X2, …, Xn} is a random sample 
from some probability density function, f(x; θ), 
and that one wants to estimate θ ∈ Θ. Assume that 
Θ is an open subset of a k-dimensional Euclidean 
space. Now in many practical problems, the 
likelihood function Πjf(xj; θ) is too complicated to 
use, for instance, for computing the maximum 
likelihood estimates (MLEs) for θ. Le Cam’s 
estimation procedure is to look first for a (√n) 
consistent estimator (which is often easy to find), 
say, θn

*, and then make a correction to it to obtain 
the final estimate θ^n, of the form,

ˆ ( ).* /θ θn n n nn M Y= + − −1 2 1

for some Yn, M n (de ta i l s 
below). The elegant LAN theory says that if the 
so-called LAN conditions are satisfied, then θ^n is 
asymptotically optimal. This is a remarkable 
procedure in that it calls for only a “one-step’’ 
correction, unlike the usual Newton-Raphson 
procedure. The same optimality would hold for the 
MLE as well, but it would be under more stringent 
conditions. The correction term Mn

–1Yn introduced 
above is computed based on “local maximization’’ 
as follows. By consistency of θ*n, for every ε > 0, 
there exist b and nε such that for n ≥ nε

P bnn[| | ]* /θ θ ε− ≤ ≥ −−
0

1 2 1

whatever the true θ0. Thus 
for large n, the preliminary estimate  will bring one 
(with a high probability) to local neighborhoods Θn 
= {θ: |θ – θ0| ≤ bn–1/2} of radius bn–1/2 of the true θ0. 
Estimation of θ now becomes that of estimating the 
local parameter τ = θ – θ0.
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Le Cam and his wife in the Summer Palace, Beijing, May 
1985, with members of the Academica Sinica, left to 
right, W.-S. Xu, K.-T. Fang, S.-R. Wang.
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To estimate τ, one uses the log likelihood ratio

Λ( , ) log
( ; )

( ; )
.θ θ

θ
θ0

01

=
=
∑

f x

f x
j

jj

n

f o r  θ i n  t h e 
neighborhood of radius b/√n of θn

*. Replacing θ0 
and θ in the function Λ by θn

* and θn
* + τn–1/2 

respectively yields

Λ( , ) { :| | }.* / *θ τ θ τn nn t t b+ ∈ ≤−1 2   

Next one l o c a l l y 
approximates this function of τ by a linear-
quadratic form as in

Λ( , ) ,* / *θ τ θ τ τ τn n n nn Y M+ ≈ ′ − ′−1 2 1

2

w i t h Y n  t h e 
random vector and Mn the positive definite random 
matrix mentioned above. Maximizing this linear-
quadratic approximation with respect to τ yields an 
estimate τ^ = Mn

-1Yn, which is the correction term 
appearing in the final estimate θ^n.

Yn and Mn can be constructed in various ways 
and they are not necessarily the first two 
derivatives of the function Λ. For instance, let

Z
f x n u

f x
i kn ji

j n i

j n

,

* /

*

( , )

( , )
, ,=

+
− = …

−θ

θ

1 2

1 1  for 

where {ui;  i 
= 1, …, k} is the natural k-dimensional basis. Then 
Yn could have its ith component

Y Z i kn i n ji
j

n

, , , ,= = …
=
∑    for 1

1

and Mn its components

M Z Z i l kn il n ji n jl
j

n

, , , , , , , .= = …
=
∑   for 1

1

T h e i n v e r s e 
matrix Mn

-1 serves as an estimate of the covariance 
matrix of θ^n. In the LAN theory θ^n is an 
asymptotically most concentrated estimate by the 
Hájek Convolution Theorem.

Now, for an elementary example, suppose that 
the real-valued X has a double exponential density

f x e x( ) | |= − −1

2
θ

o r  a  C a u c h y density

f x
x

( )
[ ( ) ]

.=
+ −

1

1 2π θ
Both of these densities satisfy 
LAN conditions (see, e.g., pages 109–111, Le Cam 
and Yang (1990)). 

The reader is invited to try to estimate θ using 

Le Cam’s method. Here θ is a one-dimensional 
parameter. One can take u1 = 1 in the computation of 
Zn,j1. Since Le Cam’s procedure is asymptotically 
optimal, it is important to check, for finite samples, if 
the resulting estimate θ^n works. This can be done by 
checking if f(x, θ^n) fits the original data x1, …, xn. It 
should be pointed out that there is a certain amount 
of flexibility in using Le Cam’s procedure. If θ^n does 
not fit the data well for the choice of u1 (which is 1 in 
our case), one can try other values of u1, say 1.5, .8, 
or others for improving the fit. Perturbing the value 
of u1 would not affect the asymptotic optimality of 
the resulting estimate. 

It is perhaps worth recording that one of us 
(DRB) teased Lucien a number of times asking 
whether he would have the will power to carry out 
but one iteration. His reply was always, well, the 
theory indicates that only one step is necessary.

Professor Le Cam’s theoretical work was 
sometimes stimulated by practitioner’s questions, 
sometimes by teaching courses and often by his 
own applied work. The practical bent is well 
evidenced in the following list of his principles, Le 
Cam (1990):
Basic Principle 0. Do not trust any principle.

Principle 1. Have clear in your mind what it is you 
want to estimate.

Principle 2. Try to ascertain in some way what 
precision you need (or can get) and what you are 
going to do with an estimate when you get it.

Principle 3. Before venturing an estimate, check that 
the rationale which led you to it is compatible 
with the data you have.

Principle 4. If satisfied that everything is in order, 
try first a crude but reliable procedure to 
locate the general area in which your 
parameters lie.

Principle 5. Having localized yourself by (4), refine 
the estimate using some of your theoretical 
assumptions, being careful all the while not to 
undo what you did in (4).

Principle 6. Never trust an estimate which is thrown 
out of whack if you suppress a single observation.

Principle 7. If you need to use asymptotic argu-
ments, do not forget to let your number of 
observations tend to infinity.

Principle 8. J. Bertrand said it this way: “Give me 
four parameters and I shall describe an 
elephant; with five, it will wave its trunk.”

These principles are certainly meant to be applied 
to any of his LAN estimates.

Lucien had special concerns for the education 
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and welfare of students, both undergraduate and 
graduate. None were ever turned away from his 
office and he was invariably in the Department 
Coffee Room chatting from noon til 1:00. On one 
occasion he returned to the Coffee Room upset after 
seeing a Dean. Just what had happened wasn’t clear 
but a student was involved. Lucien erupted with: 
“Rules are meant to help, not to hinder.” Indeed.

Professor Le Cam was the driving force behind 
the setting up of the Line and Michel Loève 
Fellowship awarded to the graduate student at 
Berkeley with the greatest promise in probability.

He tried hard to involve people in the content 
of his papers. For example Le Cam (1986b) starts 
with the words:

“In the beginning there was de Moivre, Laplace, 
and many Bernoullis, and they begat limit 
theorems, and the wise men saw that it was 
good and they called it by the name of Gauss.” 

Lucien had a photographic memory and was a 
student of languages: Ancient Greek, Latin, and 
Chinese. Re the last, here’s an anecdote. He had a 
memorable visit to mainland China in 1985 and 
returned with various amusing stories. One 
concerned the words for rat and teacher. In 
Chinese, the word teacher is pronounced as “Lao 
Shi” and rat “Lao Shu”. One day he saw a dead rat 
outside the window of his hotel room. Since the 
maintenance people could hardly speak or 
understand English, to let the hotel know about 
the rat, he decided to attract the attention of the 
waitresses at the hotel restaurant. He introduced 
himself to them in Chinese “I am a Lao Shu.” The 
waitresses laughed their heads off and then he told 
them that “There is a dead Lao Shi in my room”. 
The waitresses followed him happily to his room to 
see the dead teacher!

Lucien had some pet peeves: persons who 
proved theorems without assumptions, Deans as 
mentioned above, subjective Bayesians, military 
officers and squirrels who ate the tops of his redwood 
trees. There was a period when he liked to tack onto 
his papers, even ones in French, the footnote: “The 
paper is submitted in partial fulfillment of the 
promotion requirement of the University of 
California, Berkeley.” See e.g. Le Cam (1970).

He had a clear presence on the Berkeley 
Campus. His office door was always open. Most 
everyone working anywhere near the large 
building, Evans Hall, where the Statistics 
Department is housed in seemed to know and be 
very fond of him.

In the last years of his life one continually saw 
him sitting at a computer terminal word processing 
revisions of his books, e.g. Le Cam and Yang 
(1990). The Department computer staff were much 

impressed with how much he had learned about 
LaTeX. A few hours before being taken to the 
hospital, he was busy making LaTeX corrections of 
the second edition. The volume was published 
posthumously in August.

At his death Lucien Le Cam remained a proud 
citizen of France. He had continued to write papers 
in French throughout his career and to keep in 
close contact with the French mathematicians.

With his death there will be a consequent 
reassessment of his work. Many students will learn 
about it and him for the first time and will be 
intrigued. It is clear that he has affected both 
graduate and undergraduate education by the route 
of today’s theory becoming tomorrow’s practice, 
and this will continue.

We are all the richer for having obtained the 
f ru i t s  o f  P ro f e s so r  Le  Cam’s  re sea rch 
accomplishments and many for receiving his 
personal advice and help, but we are the poorer for 
having lost his physical presence.

Professor Le Cam’s publication list may be 
found at www.stat.berkeley.edu/~lecam as may 
memorials.
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Introduction

Anthropologist Vicki Bentley-Condit of Grinnell 
College studied interactions between female and 
infant yellow baboons (Papio cynocephalus 
cynocephalus) at the Tana River National Primate 
Reserve, Kenya. She collected the data for her 
study by observing baboons in twenty-minute focal 
samples over an 11-month period in 1991-92 for a 
troop including 23 female baboons, 11 of which 
were mothers with infants (no mother with more 
than one offspring). Bentley-Condit observed and 
recorded interactions between females and infants, 
excluding interactions between a mother and her 
own offspring. One objective of her study was to 
see if female rank (described in the next 
paragraph) impacted the pattern or success rate of 
these infant-handling interactions. 

Separa te ly  f rom the  in f an t -hand le r 
interactions,  Bentley-Condit  computed a 
“dominance hierarchy score” for each female using 
a calculation based on aggressive and submissive 
interactions between pairs of the females in the 

troop. These scores use a standard method and 
exhibit natural “break points” that made it possible 
to translate the scores into High, Mid, and Low 
ranks, which we will code respectively as 1, 2, and 
3 throughout the paper. 

Regarding the objective of investigating the 
relationship of female rank and infant handling, 
Professor Bentley-Condit established the following 
research hypothesis:

Research Hypothesis: Females will tend to handle 
the infants of females who are ranked the same as 
or lower than themselves. 

Interactions between females and infants were 
categorized as:
(1) Passive: movement to within 1m of the 

mother-infant pair with no attempt to handle,

(2) Unsuccessful: movement to within 1m of the 
mother-infant pair with an attempted (but not 
successful) handle, or

(3) Successful: a successful handle.

Each female has either one or zero offspring, 
and interactions between a mother and her own 
infant were not of interest and so were excluded 
from the data set. 

Even though differentiating among these 
categories of interactions is ultimately of interest to 
the study, we will concentrate initially on Table 1, 
which gives for each female-infant pair the number 
of interactions of any category. For example, the 
value of 13 in cell (2,1) represents 13 interactions 
between Handler KM and Infant HZ over the 
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observational period of the study. For now we will 
ignore the fact that this breaks down into 2 passive 
interactions, 4 unsuccessful interactions, and 7 
successful interactions. Near the end of the paper, 
we will return to the distinction between types of 
interactions.

A Descriptive Look at the Data
A first step in investigating the research 

hypothesis is to look at a contingency table of 
infant rank by female handler rank (Figure 1). By 
‘infant rank’ we refer to the rank of the infant’s 
mother. 

Notice that High ranked handlers are more 
likely to handle High and Mid ranked infants than 
are Mid or Low ranked handlers and that Mid 
ranked handlers are more likely to handle Mid 
ranked infants than are Low ranked handlers. Both 
observations support the research hypothesis.

We can also see the same pattern in a pseudo-
Z-score breakdown (Figure 2). Figure 2 gives (O – 
E)/√E for each cell of the table in Figure 1 (A), 
where O = the observed count and E = the 
expected cell frequency using the conventional 

expected value calculation for a chi-square test of 
independence.

This table corroborates what we learned from 
Figure 1. The progression 1.32, 0.16, and -1.17 in 
Figure 2B shows that high-ranked handlers are 
more likely to handle high-ranked infants than 
mid-ranked handlers, which in turn are more 
likely to handle high-ranked infants than low-
ranked handlers. Similarly, the pattern goes in the 
same direction for the handling of mid-ranked 
infants. Finally, low-ranked infants have a higher 
than expected frequency of handles by low-ranked 
handlers and a much lower than expected 
frequency of handles by high-ranked handlers. 
This summary of the data also supports the 
research hypothesis.

Statistical Significance
With the observations of the previous section 

in hand, Bentley-Condit approached Moore about 
the question of statistical significance: the 
descriptive analysis uncovers patterns that support 
the research hypothesis, but could chance variation 
explain these patterns?
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Table 1: Data matrix giving the total number of interactions by handler (columns) and infants (rows) over the 
course of the observational period.

HANDLERS
ranks
  KM KN NQ PO  HQ LL NY PS SK ST WK  AL CO DD LS LY MH ML MM PA PH PT RS
  1 1 1 1 | 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3
INFANTS/
Mothers
 ranks
KG/KM 1  0 0 4 2 | 1 0 0 0 3 1 0 | 0 0 0 0 0 0 0 0 0 0 2 1

HZ/HQ 2 13 23 7 5 | 0 2 1 1 5 6 18 | 1 6 3 0 1 4 1 0 9 0 10 1
LC/LL 2  4 0 1 4 | 3 0 2 1 1 5 3 | 1 0 0 1 0 2 1 1 1 0 1 6
NK/NY 2 12 4 10 5 | 9 1 0 2 3 11 7 | 8 6 3 1 0 2 1 1 5 3 3 3
PZ/PS 2  1 3 4 1 | 0 0 0 0 0 0 2 | 0 2 0 0 0 3 0 1 1 0 3 0

CY/CO 3  2 2 7 3 | 1 1 2 0 3 12 16 | 3 0 2 0 0 2 0 0 1 0 0 2
LZ/LS 3  1 0 3 2 | 1 1 0 0 2 0 5 | 2 2 2 0 1 9 2 0 0 0 3 2
MQ/ML 3  0 1 5 2 | 2 4 2 2 2 4 5 | 7 5 2 1 1 7 0 4 4 1 0 2
MW/MH 3  3 0 7 4 | 2 3 0 5 2 8 13 | 7 14 2 0 0 0 4 0 8 0 13 6
MX/MM 3  2 3 4 5 | 0 0 0 0 0 5 2 | 9 3 1 0 0 2 0 0 1 2 2 3
PK/PH 3  2 0 6 4 | 3 4 1 0 0 15 10 | 8 5 1 0 3 1 1 6 3 0 7 5

Boldface numbers give ranks of handlers or infants, with 1 being High ranking, 2 being Mid ranking, and 3 being Low 
ranking. Each handler and infant have a two-letter ID, infant ID’s are separated by their mother’s ID with a /. Horizontal 
and vertical lines separate the rank categories.

Figure 1: Interactions by Infant Rank and Handler Rank (A); column percentages (B)

Handler's rank Hi  Mid Low Hi Mid Low

Infant Hi  6 5 3 3.5% 2.2% 1.1%
Rank Mi 97 83 96 56.7% 36.7% 33.9%
 Lo 68 138 184 39.8%  61.1% 65.0%
   (A)   (B)
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The notion of statistical significance carries 
here the “caveat emptor” of any inferential 
procedure applied to observational data: the 
randomness required by the test is assumed and 
not designed; that is, randomness will be 
embedded in the null hypothesis of the 
significance tests we will apply to these data.

We could consider testing the research 
hypothesis using a chi-square test of independence 
for the 3-by-3 contingency table. This yields a test 
statistic of 

C
O E

E
=

−( )
=∑

2

30 76.

and, with 4 d e g re e s  o f 
freedom, a P-value of 0.000 (3.43 x 10 –6, to be 
precise). This suggests we reject the null 
hypothesis that handler rank is independent of 
infant rank and strengthens the descriptive 
conclusion reached above.

We should, however, be cautious in applying 
this chi-square test to these data. The primary 
assumption in the chi-square test of independence 
is that these 680 observations are independent of 
one another. Clearly this is impossible given the 
repetition of interactions between particular 
females and infants; for example KN interacts with 
HZ a total of 23 times and these 23 interactions 
necessarily end up in the same cell of the 3-by-3 
table.

Permutation Tests
To take account of this complexity in the data 

we use a permutation test. Permutation tests (also 
known as randomization tests) were first proposed 
by R.A. Fisher in the 1930’s for the analysis of 
randomized experiments. Efron and Tibshirani 
(1998) describe permutation tests as “… a 
computer-intensive statistical technique that 
predates computers.” They are conceptually 
simple, but before the days of high-speed 
computing were of limited practical value. 
Fortunately, Fisher saw that standard normal-based 
methods approximated the permutation tests in 
most classical situations, so permutation tests were, 

for Fisher, a theoretical and conceptual tool, more 
than a practical tool (1998, page 202). One 
permutation test that did find its way into standard 
practice was Fisher’s famous exact test for two-by-
two tables, whose computation is a simple 
application of the hypergeometric distribution. 
This test provides an alternative to the chi-square 
test, useful for situations where the chi-square 
approximation is questionable because of small 
samples. 

Examples
We will  now il lustrate the notion of 

permutation tests with examples, starting simple, 
and working our way back to the baboon data. 
Permutation tests have wide applicability beyond 
categorical data problems leading to two-way 
tables; consult books by Efron and Tibshirani 
(1998), Good (2000), and Manly (1991) to learn 
more about the range of applications.

Example 1—A lady tasting tea. We begin with a 
simple example of Fisher’s exact test. In his famous 
book The Design of Experiments, Fisher (1937, 
pages 13–29) says that “A lady declares that by 
tasting a cup of tea made with milk she can 
discriminate whether the milk or tea infusion was 
first added to the cup.” Fisher constructs an 
experiment to test her claim: We will prepare 8 
cups of tea, at random assigning 4 of them to be 
“milk first” and (by implication) the other 4 to be 
“tea first.” The woman proceeds to taste from each 
of the 8 cups and to label each as “milk first” or 
“tea first.” If she correctly identifies a sufficiently 
high number of the 8, she will have established her 
claim.

Here the null hypothesis is H0: “The lady’s 
claim is false” versus an alternative of Ha: “The 
lady’s claim is true.” What would make us believe 
the lady’s claim? Suppose the experiment resulted 
in the data set given in Figure 3A and the resulting 
2-by-2 table of Figure 3B. 

If the null hypothesis were true, the lady 
would have no ability to distinguish cups based 
upon her ability to tell if milk or tea is added to the 
cup first. Yet, she has correctly identified 75% of 
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Figure 2

 Hi Mid Low   Hi Mid Low

Hi 3.52 4.65 5.83 Hi 1.32 0.16 -1.17
Mi 69.41 91.73 114.86 Mi 3.31 -0.91 -1.76
Lo 98.07 129.62 162.31 Lo  -3.04 0.74 1.70

  (A: Expecteds)    (B: Pseudo-Z-scores)

On the left (A) are expected values from Figure 1, under the assumption that handler rank and infant rank are 
independent. On the right (B), each entry gives (O – E)/√E for the cell, where O is the observed frequency and E is the 
expected. These "pseudo-Z-scores" can be interpreted as we usually interpret standard normal scores.
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the 8 cups. Do the data provide evidence against 
H0 in favor of Ha? The logic of Fisher’s exact test is 
this: Devoid of her claimed ability, the lady makes 
her decisions about the 8 cups through other 
means: guessing, cup order, temperature 
differences, etc. Thus, if H0 is true, then because of 
the random assignment of treatments (Milk First or 
Tea First) to cups, any permutation of the labels in 
column 3 of Figure 3A is equally likely, so that any 
2-by-2 table with row and column totals as given 
in Figure 3B is equally likely. If random 
permutations of column 3 have small probability of 
resulting in a table as skewed toward Ha, or more 
skewed, than is our data, then we would have 
evidence against H0 and toward Ha.  This 
probability is, of course, the P-value of the test. 
Because both margins of the 2-by-2 table are 
constrained by design, we can base the P-value 
calculation on X, the count in the upper left cell of 
the 2-by-2 table; X = 3 for our data set. The 
P-value is then P(X ≥ 3) assuming H0 to be true.

Under H0, running the experiment is 
equivalent to randomly permuting 4 M’s and 4 T’s 
to column 3 of Figure 3A. Each such assignment 
leads to a 2-by-2 table. There are

 

8

4
70







=
 

s u c h  r a n d o m permutations. Of 
these we must count how many lead to tables as 
extreme (in the direction of Ha) or more extreme 
than Figure 3B. There are

4

3

4

1
16





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

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that lead to the same 2-by-2 table 
as Figure 3B and there is just one more 
permutation, namely when the 4 M’s are placed 

before the 4 T’s in column 3, leading to 8 correct 
guesses and the 2-by-2 table.

4 0

0 4











The P-value is thus seen to be

16 1

70
243

+ = .

a value that does n o t  s u p p o r t 
rejection of the null hypothesis. In this example, in 
order for the lady to substantiate her claim she 
would have to be perfect. That is, if the 
experimental data had been 

4 0

0 4











then our P-value would have been

1

70
0143= .

a result that gives reason to reject H0.
Example 2: An illustrative example with fake 

baboons.
Our second example is again simple, but is 

more similar to the structure of Table 1 than was 
the previous example. Besides illustrating the 
mechanics of a permutation test, this example will 
suggest other important properties of permutation 
tests:
• They provide a method for establishing 

significance in contingency table data where 
standard inferential procedures, such as chi-
square, cannot be used because assumptions 
are not met.

• They provide more flexibility in the choice of 
test statistic than a chi-square analysis and 
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Figure 3: A hypothetical outcome of the lady tasting tea.

  First     Lady's "Guess"
Cup ID "Guess" Poured    Milk Tea (total)

1 M M      
2 M M   Milk 3 1  (4)
3 M M  Poured 
4 M T  First Tea 1 3  (4)
5 T M   (total) (4) (4)
6 T T 
7 T T 
8 T T 

 Raw Data (A)      2-by-2 table (B)

In figure A, an M in column 2 represents an instance where she said the milk was put into the cup first; a T represents 
where she said tea was put in first. Similarly, an M or T in column 3 represents the truth about which was added first to 
the cup. The lady has correctly identified 3 of the 4 cups with the milk first and 3 of the 4 cups with the tea first.
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may provide a more powerful test for a 
particular research hypothesis; and

• Except for certain, small data sets, the 
calculation of the null distribution for one’s 
test statistic will be hard to calculate 
analytical ly,  but wil l  be fair ly easi ly 
approximated with modern statistical 
computing software.

Consider the data matrix in Figure 4. This data 
set is similar in structure to Table 1, but is smaller 
and is fake. There are 3 infants (a, c, and e) and 6 
females (A, B, C, D, E, and F). Three of the females 
are mothers of precisely one infant and the 
notation is chosen to be helpful: A is a’s mother, C 
is c’s mother, and E is e’s mother. To the right of the 
data is the 3-by-3 contingency table of infant rank 
(rows) by handler rank (columns). For example, 
the 10 count in cell (2,1) results from the 5 
interactions between female A and infant c plus the 
5 interactions between female B and infant c.

A chi-square test of independence yields a test 
statistic of C = 8.117 and, with 4 degrees of 
freedom, a P-value of .087, a result that is 
marginally significant. The validity of this analysis 
requires a sampling assumption and while the 
analysis is valid under several sampling models 
(i.e., multinomial, product-multinomial, or 
Poisson; see Fienberg [1983, pp. 15–16]), all such 
models require that, in this example, the 52 
observations be independent of one another. 
Observations are clearly not independent here; for 
example, the 9 handlings of infant e by handler F 
would necessarily have to be in the same cell of the 
contingency table, as would be the case for all 
other frequencies in the original data matrix. That 
is, frequencies from the data set necessarily enter 
the contingency table in clusters, a complication 
not admitted by the chi-square analysis, but 
amenable to a permutation test.

To illustrate a permutation analysis of these 
data we first consider the null hypothesis and an 
alternative statement of the null.

H0: Handler rank and infant rank are 

independent.
H0 (alternative statement): The female 

handlers interacted with infants as given in the 
data set. These interactions involved a variety of 
complex causes, but none of this complexity had 
anything to do with ranks. That is, ranks can be 
viewed as meaningless labels attached to infants 
and females. 

The null hypothesis posits a randomness to 
infant and handler ranks, which we employ in 
constructing the null sampling distribution of a test 
statistic. Before computing this distribution, we 
choose a test statistic that reflects the level of 
agreement between the data and the null 
hypothesis. One such test statistic is the usual chi-
square test statistic, C. We will discuss other test 
statistics below. The sampling distribution of the 
test statistic under the null is defined by the 
following process:
(1) Assign ranks at random to infants and females 

using the rank distributions of the data set. 
That is, assign ranks at random so that infants 
are assigned, in this case, 1 High, 1 Mid, and 1 
Low and so that females are assigned 2 High’s, 
2 Mid’s, and 2 Low’s. This assignment leads to 
the original data table but with permuted 
ranks.

(2) Re-form the 3-by-3 table.

(3) Compute the value of test statistic for this 
table.

Figure 5 gives two possible permutations that 
could be assigned at random. Each permutation of 
the ranks to females and infants induces a 3-by-3 
contingency table. The top data table and 3-by-3 
table corresponds to a permutation of 3, 1, 2 on 
the infants and 3, 1, 1, 3, 2, 2 on the females. This 
permutation is shown in the usual way in the 
figure and we take note of the agreement between 
infant’s and mother’s ranks.1

The first permutation leads to a chi-square test 
statistic of C = 8.410, greater than the value 
observed in the data set, while the second 
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Figure 4: A hypothetical, smaller example of baboon data similar in structure to the real data.

     Handler, rank
  A B C D E F    Handler’s rank

   [1 1 2 2 3 3]   [1 2 3]
Infant a [1] 0 3 2 1 0 1 Infant’s [1] 3 3 1
Rank c [2] 5 5 0 5 0 0 Rank [2] 10 5 0
 e [3] 5 4 6 6 0 9  [3] 9 12 9

Here, there are 3 infants (a, c, and e), one of each rank. And there are 6 females, two of each rank. A is a’s mother, C is c’s 
mother, and E is e’s mother. To the right is the 3-by-3 contingency table, with infants along rows and females along 
columns.
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permutation leads to a value of C = .960, smaller 
than that observed. The sampling distribution of C, 
under the null is determined by computing C for 
each of the equi-probable (under H0) permutations 
of ranks. In this case, the data set is small enough 
that  one can completely enumerate the 
permutations. (There are 36 total: 6 ways to assign 
1, 2, and 3 to infants and, for each of these, 6 ways 
to assign ranks 1, 2, and 3 to the non-maternal 
handlers. The ranks of the maternal handlers are 
fixed and not randomized.) Table 2 lists these 
permutations along with their C values. 

Of these 36 values, 12 are greater than or 
equal to the observed value of 8.117, so the 
P-value is 12/36 = .3333. This result is much less 
significant than the earlier chi-square analysis 
(P-value=.087) would have led us to believe. 

While the smallness of this example allows a 
complete enumeration of all possible permutations 
and, thus, an exact calculation of the null 
distribution and P-value, such an exact calculation 
is usually intractable. In these situations one must, 

instead, approximate the null distribution and 
P-value using a computer simulation. For this 
example, one could generate at random, say, 
10,000 permutations from the possible 36, each 
time computing the 3-by-3 table and value of C. In 
this way one would get an empirical distribution of 
C under H0 and an empirical estimate of the 
P-value by observing what proportion of the 
10,000 values of C are greater than or equal to 
8.117. With high-speed computing, generating 
10,000 iterates would be fast and one could 
estimate the P-value to within .01 with 95% 
confidence, a result accurate enough for practical 
purposes. 

Other Test Statistics
Thus far, we have seen two advantages to the 

permutation test over a chi-square test. First, the 
permutation test makes few assumptions on the 
data. The disparity between the two P-values above 
suggests that the independence assumption matters 
for these data. The second advantage provided by 
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Figure 5: Two possible random permutations of ranks.

(1)  A B C D E F   [1 2 3]

   [3 1 1 3 2 2]  [1] 8 0 7
a [3] 0 3 2 1 0 1 [2] 10 9 11
c [1] 5 5 3 2 0 0 [3] 5 1 1
e [2] 5 4 6 6 6 3  C = 8.410 (S = 16)

(2)  A B C D E F  [1 2 3]

  [3 2 1 1 2 3] [1] 5 5 5
a [3] 0 3 2 1 0 1 [2] 12 10 8
c [1] 5 5 3 2 0 0 [3] 3 3 1
e [2] 5 4 6 6 6 3  C = .960 (S = 16)

Values of C, the chi-square test statistic are given. In parentheses we give the values of a different test statistic, S, which 
we discuss below.

Table 2:  The 36 permutations of ranks along with the corresponding test statistic values.

123112233 123112332 123122133 123122331 123132132 123132231 132113223 132113322 132123123
8.117 7.135 8.410 5.962 2.426 0.960 7.135 8.117 2.426
 
132123321 132133122 132133221 213211233 213211332 213221133 213221331 213231132 213231231
0.960 8.410 5.962 8.410 5.962 8.117 7.135 0.960 2.426

231213213 231213312 231223113 231223311 231233112 231233211 312311223 312311322 312321123
2.426 0.960 7.135 8.117 5.962 8.410 5.962 8.410** 0.960 **

312321321 312331122 312331221 321312213 321312312 321322113 321322311 321332112 321332211
2.426 8.117 7.135 0.960 2.426 5.962 8.410 7.135 8.117

The first 3 elements of each permutation gives ranks assigned to a, c, and e, respectively; the final 6 elements give the ranks assigned to 
A, B, C, D, E, and F.  The two values of C marked with ** are the two examples shown in Figure 6.
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the permutation test is that it handles data sets 
with complicated dependencies and repetitions, as 
our simple Example 2 illustrates.

The third advantage to the permutation test is 
that one can use test statistics other than the chi-
square test statistic C used above. Different test 
statistics may naturally arise from the researcher’s 
hypothesis. 

For example, in data arising from the baboon 
study, the research hypothesis states that handlers 
tend to avoid handling infants of higher rank than 
themselves. This suggests the following test 
statistic, S, calculated from the 3-by-3 table:

a b c
d e f
g h i

as: a – b – c + d + e – f + g + h + i. Notice that cells 
for which the female’s rank is at least as high as the 
infant’s rank agree with the research hypothesis 
and so contribute positively, while other cells 
contribute negatively. For example, the value of the 
test statistic S for the table:

 3 3 1  3 -3 -1
10 5 0 =  +10 +5  -0  = 44.
 9 12 9  +9 +12 +9

Larger values of S correspond to contingency tables 
further from H0 in the direction of Ha. For example, the 
following table clearly is closer to H0 than the previous 
one (since frequencies have shifted up the columns) 
and has, correspondingly, a smaller value of S:

7  7 5  7 -7 -5
8  3 0 = 8  3 -0 = 28.
7 10 5  7 10  5

We can generate the permutation distribution of S:
• Assign the ranks at random, first to infants, 

then to handlers ,  constra ining rank 
distributions according to the original data,

• re-form the 3-by-3 table,

• compute S for the 3-by-3 table.

Again, using the data from Example 2, we can 
calculate the precise P-value by listing all 36 
permutations and the corresponding values of S. 
Figure 5 gives S values (both 16) for the two 
examples given there. The sorted values of S are: 

 -10 -4 -4 -2  0  2  4  6  6  6  6  6 10 10 14 16 16 16 

 20 20 20 22 22 22 26 26 26 30 30 30 36 36 36 40 40 44.  

This value of S = 44 from Figure 4 gives a 

P-value of 1/36 = .028, a more significant result. 
Figure 5 suggests how we have gained significance. 
The top example of Figure 5 shows a value of C = 
8.410, but a value of S = 16. This table is 
somewhat extreme in terms of the C statistic 
because it suggests a lack of independence between 
rows and columns, but not in the direction of the 
research hypothesis; low handlers are more 
inclined to handle low infants in this table. C 
measures deviations from independence in a multi-
directional way, while S focuses on a direction 
consistent with the research hypothesis. 

Analysis of Table 1
We return now to the problem of ascertaining 

statistical significance for our original data matrix, 
Table 1. We concentrate here on the test statistic, S, 
which measures deviations in the direction of the 
research hypothesis. Because we now have 11 
infants and 23 handlers, enumeration of the null 
distribution is infeasible. Thus we computed an 
empirical approximation to the null distribution of 
S using S-Plus 2000 on a Compaq Deskpro 
computer. The value of S for the 3-by-3 table in 
Figure 1 (original data) is 472. Figure 6 shows the 
empirical distribution of S using 10,000 iterates; 
notice that 472 is clearly in the right-hand tail, 
suggesting fairly strong evidence against the null in 
favor of the research (alternative) hypothesis. 
Indeed, only 166 of the 10,000 values of S in the 
empirical distribution are 472 or larger, which 
represents an estimated P-value of .0166. The 
small P-value gives substantial evidence against the 
null hypothesis in favor of the research hypothesis 
that handler rank is positively correlated with 
infant rank. At the same time, it is interesting to 
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Figure 6: Empirical sampling distribution of the test 
statistic, S, based upon 10,000 iterates. The dashed line 
marks the value of S = 472 from the data set. Only 166 
of the 10,000 values of S are 472 or larger, which gives 
us an estimated P-value of .0166.
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note that the permutation test P-value is less 
convincing than we obtained initially using the 
conventional chi-square test. In that case, the test 
statistic was C = 30.76 and with 4 degrees of 
freedom the P-value was 3.43 x 10 –6, which is 
much more convincing than the permutation 
analysis, but it is also inappropriate, given the 
assumptions required of the chi-square test.

We now return to the question of different types 
of interactions between handlers and infants. Table 3 
gives the permutation results for different types of 
handler-infant interactions. Evidence for the research 
hypothesis is strong for both passive and 
unsuccessful interactions (P-values of .0118 and 
.0123, respectively), but not for successful 
interactions. Passive interactions turn out to be 
difficult to interpret, since it is not clear that passive 
interactions are real attempts to interact with infants. 
It was of interest to the researcher that infant and 
handler ranks are positively associated for 
unsuccessful interactions but not for successful ones. 

Summary
We have seen permutation tests provide a 

viable alternative for contingency table analysis 
where a conventional chi-square analysis would be 
invalid because basic assumptions are violated. 
Permutation tests not only provide an alternative, 
but also provide the flexibility of more powerful 
test statistics. Readers interested in learning more 
about permutation tests and of their range of 
applicability should consult Efron and Tibshirani 
(1998), Good (2000), and Manly (1991).
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Notes
1. We constrain permutations so that both 

handler and infant ranks retain the same 
distributions as in the original data. One could 
instead constrain just the handler ranks and allow 
the permutation on handlers to induce ranks on 
infants through their mothers. Constraining both 
distributions is analogous to constraining both 
margins in Fisher’s exact test and seems more 
natural to the authors. 
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Table 3:  Empirical P-values for interactions broken down by All types, Passive, Unsuccessful, and Successful.

Type of interaction P-value 95% Margin of Error

All types .0166 .0025
Passive .0118 .0021
Unsuccessful .0123 .0022
Successful .3885 .0096

P-values are based upon 10,000 iterates computed by S-Plus 2000 on a Compaq Deskpro computer and margins of error 
are computed using the common formula for the confidence interval for a sample proportion.  We have evidence for our 
research hypothesis with all categories except the successful interactions.
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Hajimemashite! Dozo yoroshiku onegai shimasu! 
(“How do you do? It is a pleasure to meet 
you!”)

Last summer, I  had the privi lege of 
participating in a research program in Fukuoka, 
Japan, as part of the National Science Foundation 
(NSF) Summer Programs in Japan, Korea, and 
Taiwan. During this eight-week program, 
participants have the opportunity to get a glimpse 
of their fields of research in a foreign setting, to 
build contacts with researchers for possible future 
collaboration, and to be exposed to a completely 
new language and culture. This program is 
extremely worthwhile both on an academic and 
personal level, and it is my hope that by the end of 
this article I will be able to compel at least some 
statistics graduate students to consider this 
wonderful opportunity.

The NSF Summer Programs in Japan, Korea, 
and Taiwan consist of four components: the 
Summer Institute in Japan, the Monbusho Summer 
Program in Japan, the Summer Institute in Korea, 
and the Summer Institute in Taiwan. I took part in 
the second program (officially titled “Research 
Experience Fellowships for Young Foreign 
Researchers”), which was established in 1995 by 
the Japanese Ministry of Education, Science, 

Sports, and Culture (Monbusho). The two NSF 
programs in Japan are similar, although there is a 
difference in language training (the Summer 
Institute has a more intensive program) and in host 
institution placement. For the Summer Institute, 
assignments are mainly in the form of internships 
at government and corporate laboratories in the 
Tokyo or Tsukuba areas. For the Monbusho 
Program, participants are usually assigned to 
national universities or inter-university research 
institutes. The Summer Institute participants are all 
from the US, whereas the Monbusho Program 
participants are from various parts of the world 
(US, France, Germany, and the UK). This year 
there were about 80 Monbusho participants 
representing disciplines such as anthropology, 
biology, chemistry, engineering, psychology, and 
statistics (tokeigaku in Japanese).

At this point, I would like to dispel a popular 
misconception about the Summer Programs in 
Japan.

MYTH: You must know Japanese to participate 
in the program.

FALSE! Although there were many participants 
who had studied the language, the majority had not 
taken a formal course and spoke little or no 
Japanese. However, most Japanese researchers are 
quite fluent in English, so language should not 
prove to be a major obstacle in terms of making 
progress in research. A lack of language skills may 
prove to be a challenge as you go through the day-
to-day life in Japan – but that’s all part of the 
experience! Of course, the more of the language 
you know, the better off you’ll be, but fluency is not 
mandatory, and all participants seemed to do just 
fine. Since my formal studies in Japanese began at 
the grade school level, and since I was brought up 
in a Japanese household, I was pretty comfortable 
in my new environment, and I had the good 
fortune of being able to communicate with most 
people I met (although it wasn’t always easy!).
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During the first week of the Monbusho 
Program, we participated in language and cultural 
training sessions at the Graduate University for 
Advanced Studies (Sokendai). After separating into 
class levels corresponding 
to our respective language 
abilities, we spent three 
days learning about the 
J apanese  cu l ture  and 
language. For those new to 
J a p a n e s e ,  t h e r e  w a s 
certainly no expectation for 
participants to master the 
language in only three short 
d a y s .  H o w e v e r,  t h e 
instructors tried to make 
the best use of this limited 
time by teaching helpful 
vocabulary and expressions 
to get through daily life – 
for  example ,  the  a l l -
important and essential 
phrase “Sumimasen, o te arai 
wa doko desuka?” – “Excuse 
me, where is the restroom?”

A s i d e  f r o m  t h e 
language classes, we also 
participated in cultural 
activities that included a visit to the famous and 
picturesque area of Kamakura and a cultural 
exposition at Sokendai showcasing origami, shodo 
(calligraphy), and chado (tea ceremony). For most 
participants, the highlight of this first week was the 
homestay experience. For a period of two days, we 
stayed with a host family, 
a n d  w e  h a d  t h e 
opportunity to experience 
l i f e  i n  a  J a p a n e s e 
household. In addition to 
interacting with family 
members and learning 
about the daily Japanese 
lifestyle, most families gave 
participants tours of the 
local sights. My host family 
treated me to a visit to a 
refreshing onsen (natural 
hot spring) and the famous 
Ramen Museum in Shin-
Yokohama. (Yes, a ramen 
museum – it ’s far more 
interesting than it sounds!) 
Although my homestay 
experience was brief, the time we spent together 
was wonderful, and I enjoyed getting to know each 
of the family members. I am certain we will 
continue to keep in touch for a long time to come.

After returning from our homestay experiences 
and completing our first introductory week, we 
prepared for departure to our respective host 
research institutions. Assignments were particularly 

widespread this year, as 
they spanned from the 
northern area of Hokkaido 
to the southern islands of 
Okinawa. I flew to the 
southern region of Japan 
known as Kyushu and 
landed in the prefecture of 
Fukuoka. I  spent the 
following seven weeks at 
my host institution Kyushu 
University, one of several 
universities in Japan active 
in statistics research. Dr. 
Takashi Yanagawa, one of 
the well-known statistics 
faculty members at Kyushu 
University, kindly agreed to 
serve as my host advisor 
during this program.

D r.  Ya n a g a w a  i s 
known as one of  the 
leading biostatisticians in 
the  country,  but  h i s 

research interests are quite broad and include areas 
such as multivariate discrete data analysis and 
nonlinear/chaotic time series. The research topic 
we selected was more related to biostatistics. Along 
with one of Dr. Yanagawa’s graduate students, 
Masahiro Makishita, our research subject was 

based upon ongoing work 
by Sakata, Yanagawa, and 
Fukuichi (2000) entitled 
“The q̂ Value and i ts 
A p p l i c a t i o n  t o  t h e 
Determinat ion of  the 
No-Observed-Adverse-
E f f e c t  L e v e l s  i n 
Dichotomous Response.” 
To provide background for 
this research, let X and Y 
be independent binomial 
random variables. The 
sample size for X is n1, and 
the success probability is 
p1. The sample size for Y is 
n 2,  and  the  succe s s 
probability is p2. Consider 
cases such as toxicology 

studies where the usual set of hypotheses are H: p1 

= p2 versus K: p1 < p2. In this setting, the problem of 
controlling the type-II error rate is of main 
concern. In an effort to help control the type-II 
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Figure 2. Graduate students and host advisor in the halls 
of Kyushu University. L to R: K. Yonemoto, Dr. T. 
Yanagawa, J. Doi, S. Imoto, and Y. Takita

Figure 1. Host advisor Dr. Takashi Yanagawa, Professor of 
Statistical Sciences, Kyushu University.
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error rate, Dr. Yanagawa and his colleagues have 
proposed a statistic called the q̂ value, an analogue 
of the p value. During the research stage of my 
program, we examined the properties of the q̂ value 
and examined size considerations of the test based 
upon q̂. Due to the presence of a nuisance 
parameter, we tried to incorporate the confidence 
interval p value method proposed by Berger and 
Boos (1994) and to extend the idea to address the 
smallest change point problem for binomial 
proportions. 

Although most of the seven weeks were 
dedicated to conducting research at Kyushu 
University, I had the opportunity to visit a number 
of institutions during this time and to interact with 
other statisticians. One of the places I visited was 
the Institute of Statistical Mathematics (ISM) in 
Tokyo. Consisting of four major departments 
(Fundamental Statistical Theory, Statistical 
Methodology, Prediction and Control, and 
Interdisciplinary Statistics), the ISM has been one 
of the main leaders of statistics research in Japan 
for many years. After I gave a brief presentation on 
my preliminary work at NC State University, I had 
the chance to meet several ISM faculty members 
and graduate students and to learn about their 
broad range of research interests and projects.

Another one of my visits was to Hiroshima 
University, where I had the opportunity to meet 
faculty and graduate students from the statistics  
and the biostatistics research groups. The areas of 
research in both groups were quite diverse, and 

some were specifically aimed at the statistical 
analysis of radiation effects data stemming from the 
1945 atomic bomb. Such research has also been a 
focus at the site of my next visit, the Radiation 
Effects Research Foundation (RERF). The RERF is a 
bi-national research institution managed by both 
Japan and the US and has continued health follow-
up studies of atomic bomb survivors started over 
50 years ago. The RERF consists of many 
departments, including the departments of clinical 
studies, epidemiology, genetics, and radiobiology. I 
had the chance to visit their statistics department 
and meet some of the lead statisticians. As I spoke 
with these researchers and learned about their 
many ongoing projects, it was immediately clear 
the RERF offers a rich source of many fascinating 
statistics research problems. Many who I 
encountered expressed an interest in recruiting 
students from places like the US. There is a need 
for more statisticians to work on these projects, 
especial ly people with a strong applied 
background. For more information about the RERF 
and possible postdoctoral and internship 
opportunities, visit the RERF web site (listed 
below).

In comparing the statistics environment in the 
US to that in Japan, something I found interesting 
was the fact that there was not a single department 
of statistics within a university throughout Japan. 
This was quite surprising given the active level of 
statistics research and the important contributions 
by people like Taguchi and Akaike over the past 50 
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Figure 3. The famous golden pavilion Kinkakuji in Kyoto.
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years. However, with the current growth of 
statistics research, their widespread applications, 
and the expansion of the statistics community 
nationwide, researchers are optimistic about the 
establishment of a department of statistics or 
biostatistics in the near future.

Although research is a main component of the 
Monbusho Program, it is certainly not all-work-and-
no-play!  Aside from conducting research, 
participants are encouraged to take personal time, 
not only to visit other research institutions, but 
also to do some sightseeing to get to know this 
beautiful country, which many of the participants 
are visiting for the first (and possibly last) time. 
Many of this year’s participants took trips to 
famous and historic sites such as Kyoto and Nara. 
Also, several participants were able to plan a joint 
hiking expedition up Mount Fuji, which I heard 
was a great success! During my stay at Kyushu 
University, the graduate students and faculty 
members extended generous hospitality to me. 
They regularly took time out of their busy 
schedules and invited me on trips to local scenic 
attractions, the downtown area of Tenjin, and many 
delectable dining excursions (which surely led to 
some weight gain!). As I traveled through the 
country on my own, one of the most memorable 
and moving experiences was my visit to the 
Hiroshima Peace Memorial Museum. If you ever 
have the chance to visit Japan, do not miss the 
opportunity to see this exhibit. It will surely have 
an impact upon you.

My participation in the Monbusho Summer 
Program was, without a doubt, one of the best 
experiences of my life, both on an academic and 
personal level. Through my interaction with Dr. 
Yanagawa and our research activities, I have been 
able to develop new ideas and a stronger 
foundation for work related to my dissertation. 
Through the many contacts I have been able to 
establish at Kyushu University, Hiroshima 
University, the ISM, and the RERF, I believe there is 
potential for future collaborative work and possible 
postdoctoral or visiting position opportunities. I 
am grateful to the National Science Foundation 
and Monbusho for their outstanding support and 
the opportunity to be a part of this unique 
program. Without hesitation, I would recommend 
this program to anyone — even if you have never 
studied Japanese. It provides the special 
opportunity to conduct research in a foreign 

setting, and it will probably be one of the last 
chances for a graduate student to have such an 
experience before entering the job market. I would 
especially encourage graduate students in statistics 
to participate. As I have looked over the 
backgrounds of Monbusho participants from 
previous years, I believe I was one of the first 
participants whose area of research is statistics. As I 
encountered researchers across the nation, many 
expressed their hope that programs like the 
Monbusho Summer Program will attract more and 
more statistics students from the US to conduct 
research in Japan.

The annual deadline for submission of 
applications is December 1st. Below, I have 
included some online resources that provide more 
information about the NSF Summer Programs. 
Finally, please feel free to contact me through email 
if you have any questions about the program, as I 
would be more than happy to share my 
experiences. This program is indeed a once-in-a-
lifetime opportunity and, if you are able to 
participate, it will surely be one of the best 
experiences of your life.
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There are ways to identify radioactive 
elements by looking at the radiation they 
emit. Through investigating some table salt 

substitute, I will guide you through one of these 
processes. Salt substitute, a food seasoning that 
uses potassium chloride in place of sodium 
chloride, was chosen as a subject because it is fairly 
common and 0.0117% of all potassium is the 
naturally occurring radioactive isotope of 
potassium, potassium-40 (K-40). Figure 1 shows 
the energy peak from radioactive K-40 in a sample 
of table-salt substitute. The graph is output of a 
gamma ray spectroscopy program.

Gamma spectroscopy is a computationally 
intense technique for identifying elements by the 
radiation they emit. It is employed in a diverse 
group of fields, from oil exploration deep under 
the oceans to astronomical investigations of the 
heavens. As a student of statistics, I find gamma 
spectroscopy particularly interesting because it is 
so dependent on statistical methods. Every time a 
gamma spectrum is analyzed a series of statistical 
applications, from differencing processes to control 
charting and goodness of fit tests, are performed. 
By the end of this article, one will see that 
commercial gamma spectroscopy programs are in 
essence specialized statistical packages locked into 
one data format.

Gamma Spectroscopy
The best way to start this tour is with a clear 

description of gamma spectroscopy. Gamma 
spectroscopy, as the name implies is the 
investigation of gamma spectra. What are gamma 
spectra? We will review some basic physics to 
make the rest of the explanation understandable to 
those unfamiliar with the terminology. Gamma rays 
are a subset of the electromagnetic spectrum. 
Recall that the electromagnetic spectrum consists 

of all forms of electromagnetic radiation. Visible 
l ight  and radio-waves  are  examples  o f 
e l e c t romagne t i c  r ad i a t i on .  The  who l e 
electromagnetic spectrum is made up of the 
following types of radiation in order of ascending 
energy: radio waves, microwaves, infrared 
radiation, visible light, ultraviolet light, x-rays and 
gamma rays. The different kinds of electromagnetic 
radiation are really all the same basic stuff. 
Electromagnetic radiation can be thought of as 
little packets of energy called photons. The energy 
levels of photons determine their common names. 
For example, a photon with an energy level of 200 
kilo electron volts (kilo eV or keV) will be called a 
gamma ray. Another way in which we refer to 
subsets of the spectrum is to name the different 
energy levels according to their wavelengths. The 
equation E = hc / λ, where h = Plank’s constant and 
c = speed of light, relates photon energy to 
wavelength. Convenience normally determines 
how one identifies waves in the spectrum. 
Referring to 100 kilo hertz (3000 meter) radio-
waves as 4.1E-10 eV waves would be cumbersome.

Back to gamma spectroscopy. A gamma 
spectrum can be thought of as a type of organized 
photograph. In a photograph the light photons 
interacting with the film over a controlled time 
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period causes an image to be recorded. A gamma 
spectrum is the result of recording gamma photons 
interacting with a crystal over a controlled time 
period. The big conceptual difference is that in 
gamma spectroscopy we organize the photons 
according to energy level rather than form a 
picture. To collect a spectrum we use a detector, a 
series of amplifiers and a computer. Photons 
interact with the detector creating electronic pulses 
proportional to their respective energy levels. 
These pulses go through a series of amplifiers and 
then to a computer that tallies them in bins 
according to their pulse size. At the end of a 

prescribed collection time, each bin will contain a 
number corresponding to the number of photons 
counted for a given energy level. The results are 
usually represented graphically. An example of 
such a graph is seen on the opening page. The 
graph resembles a histogram with the energy level 
as the x-axis and the number of photons detected 
in each energy gradation as the y-axis. The 
spectroscopy software used here does not label the 
axes, but the display does show that for the 
selected channel (number 1,467) 1,690 events 
have been recorded. Generally, the elements of the 
graph are some gamma peaks and what is called a 
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Table 1

Common Name Wavelength (m) (Approximately) Energy  (eV) (Approximately)

Gamma Rays < 1 x 10-10 > 1.2 x 104 
X-Rays 1 x 10-15 to 1 x 10-8 124 to 1.2 x 109 
Ultraviolet 1 x 10-8 to 4 x 10-7 3.1 to 124
Visible Light 4 x 10-7 to 7 x 10-7 1.77 to 3.1
Infrared 1 x 10-6 to 1 x 10-4 1.24 x 10-2  to 1.24
Microwaves 1 x 10-3  to 3 x10-2 1.24 x 10-5  to 1. 24 x 10-3

Radio Waves 1 x 10-2  to 3 x 103 4.1 x 10-10   to 1.24 x 10-4

Electric Waves > 3 x 103 < 4.1 x 10-10

Figure 2.
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continuum. The continuum, without being too 
technical, is the rest of the graph made up of 
background radiation and residual energy from 
photons not completely absorbed in the detector. 
Existence of a peak in the graph indicates the 
detection of a large number of gamma rays of the 
same energy level. The flow chart, Figure 2, should 
help to visualize the process.

Gamma spectroscopy is useful because it can 
detect and identify gamma rays. Many radioactive 
isotopes of elements, or radionuclides, have unique 
gamma ray signatures. From a gamma spectrum it 
is often possible to tell the type and amount of 
radioactive element present in a sample. This fact 
makes gamma spectroscopy a useful tool in many 
fields. A geologist may want to know the quantity 
of thorium in a certain area. A medical technologist 
may need to know if he has been exposed to the 
radioactive iodine recently administered to a 
patient. Astronomers use a similar technique to 
investigate far off stars. In fact, different variations 
of this technique turn up in many surprising places.

Statistics Employed
Now that we know the nature and some uses 

of gamma spectroscopy, we will discuss some of 
the statistics involved. Since the object of the 
process is to match energy levels with peaks, we 
need to calibrate the computer’s pulse counting 
bins, or channels, with respect to energy. Recall 
that pulses are sorted into bins according to their 
size and pulse size is proportional to energy. In our 
machine, the ratio of channels to keV is 
approximately one channel per keV. A gamma 
calibration source emitting gamma rays with 
energies of 59.5, 88, 122, 166, 279, 662, 898, 
1173, 1332 and 1836 keV was placed on a 
germanium detector and a count, the term used for 
acquiring data, was taken for a period of 1000 
seconds. Five more counts were taken.  Each 
spectrum was inspected to determine the channels 
at which each peak had a maximum. 

The channel numbers and the energy level 
vectors were entered into the analysis program 
Minitab and linear regression was then used to find 
a function relating energy to channel number. One 
must remember that the calibration problem is 
slightly more complicated than a standard linear 
regression problem.

I will restate the situation. In sample analysis, 
we have data stored in bins. We would like to 
assign an energy level to each channel. Using a 
known source of gamma rays and linear regression, 
we can obtain a representation of channel as a 
function of energy level. That is not the end. We 
need to identify the sample gamma rays based on 
channel number. To do this we invert the 

regression equation. It is important to note that 
this is not the same as using channel as the 
predictor and energy as the response in the initial 
regression. Our regression equation is: 

Channel =  –7.72084 + 1.01012*Energy. 

On the graph above, Y values represent channel 
numbers and X values represent energy levels in 
Kev. Solving this equation for energy, we get 

Energy = .98998*Channel + 7.643488. 

When analyzing specimens of  unknown 
radioactive material, we use the second equation 
above to assign energy levels to peaks found in the 
spectrum. Once the value for energy is found, a 
confidence interval for that value can be calculated. 
To see the details of these computations and for 
further discussion of regression as it is used in 
calibration see Regression Analysis, Concepts and 
Applications by Graybill and Iyer (pp. 427–431).

When viewing the graph of our original 
regression, it may seem that the line looks “too 
perfect.” One should note that the amplifiers used 
for gamma spectroscopy are designed to have this 
linear property.

The plots in Figure 4, labeled “Calibration 
Residuals” and “Calibration Residuals vs. Fits” are for 
the regression above where “Channel” is the response 
variable. Inspection of these residual plots indicates 
that our standard regression assumptions of normal 
data and constant variance appear to hold. 

Other parameters requiring calibrations are 
peak shape and efficiency. The fact that energy 
absorption properties in the detector will cause the 
peaks to be wider at the bottom for higher energy 
gamma rays necessitates a calibration of peak shape 
with respect to energy. Efficiency calibration is the 
standard process of relating a measurement to a 
known value. Because many radiation sources are 
isotropic, that is, they are emitted in equal number 
in all directions, only a fraction of their output can 
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be incident on the detector. These two calibrations 
are more complicated than energy calibration and 
sometimes employ nonlinear regression procedures.

Now that we have our orientation with respect 
to energy, we can look at the rest of the analysis 
process. Many of the procedures used in gamma 
spectroscopy are complicated and a thorough 
discussion here would be very lengthy. In the 
interest of brevity, I will list, with a short 
description, some of these computations, many of 
which are statistical in nature. Most spectroscopy 
software packages run through a set of procedures 
similar to the following.
Peak Search 
 The second difference of the spectrum is 

obtained through a process similar to the 
differencing done in time series analysis. This 
process is analogous to finding the second 
derivative. Using the second difference, we are 
able to locate relative maxima, the peaks, in 
the spectrum.

Fitting
 Least squares procedures identical to those 

used in linear regression are performed to fit 
continuous functions to the discrete data. 

Integration
 The area under each peak is proportional to 

the number of gamma rays counted for that 
energy. Numerical integration can be used to 
determine the true number of photons 
present. 

Calibration
 The number of counts in a peak can be related 

though the efficiency calibration to the units 
we desire. In other words, depending on our 
sample, we can get a number of photons 
emitted per unit area or volume or mass, etc. 

Goodness of Fit

 Chi-square fit  tests are automatically 
performed on the functions to alert the analyst 
to poorly fitting functions.

Propagation of Errors
 The uncertainty in the count is determined 

and combined with the uncertainty of the 
calibrations to report a confidence interval or 
“error” with the measurement results. 

Quality Control
 Many commercial spectroscopy programs 

automatically keep quality control charts of 
key parameters.

Minimum Detectable Calculations 
 Minimum detectable concentrations or 

minimum detectable activities (MDA’s) are 
determined for each sample count through a 
procedure based on the t-test showing what 
could loosely be thought of as the “power” of 
the analysis.

Data Collection

Aside from the statistical procedures, another 
aspect of gamma spectroscopy that may interest 
statisticians is the probabilistic nature of the data 
collection. The process of amassing data into a 
spectrum is a Poisson process. Recall that a Poisson 
process is a counting process with independent 
increments, and that the number of events counted 
in any interval of a given length has a Poisson 
distribution. Gammas arriving at a detector can be 
shown to meet these conditions. Further 
explanation of the Poisson process can be found in 
Introduction to Probability Models.

Another very interesting fact is that for a given 
gamma energy, the energy absorbed in the crystal 
will not be exactly the same, but will vary slightly. 
This is caused by certain characteristics of the 
detector crystal. The slight differences in detected 
energy level will cause peaks to have the shape of 
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Figure 4.
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the normal distribution. That means for a given 
gamma energy, the probability of collecting a certain 
number of counts over time is distributed as Poisson 
and the exact location on the x axis of the counts 
representing that gamma ray energy are distributed 
normally with the “true” energy level as the mean. 

The plot of the salt substitute spectrum in 
Figure 5, with a close-up of the region between 
channels 1435 to 1502 in the upper frame, shows 
the Gaussian shape of the K-40 peak. To more 
closely investigate the shape of the K-40 peak, the 
data in the peak region were analyzed using 
Minitab. Keep in mind that we are investigating the 
energy spectrum, which is continuous, but our data 
are discrete. This fact will be important when 
choosing a test of normality. First, we look at a 
histogram of the data. 

The shape of the histogram appears to be close 
to normal. Notice that the average of the peak data, 
when entered into the regression equation gives a 
result of  1460.3 keV. The energy level for K-40 
given by The Table of Isotopes (Firestone et al., 
1999) is 1460.8 keV. Our calibration is fairly 
accurate considering that the peak bounds, on 
which the mean will depend, were determined by 
eye rather than using an analytical method. Figure 
6 is a normal plot of the data. The plot indicates 
that there is only a slight deviation from normality 

in the tails of the peak. This deviation is explained 
in the theory of charge collection in detectors, and 
the transition from the peak to the continuum 
portion of the spectrum. Because the spectrum is 
continuous, but the data are discrete and forced 
into a small finite set of bins, the Anderson-Darling 
test of normality, based on the empirical 
distribution function and the default normality test 
in Minitab, indicates that the data are far from 
normal with a p-value of 0.000. The Ryan Joiner 
test of normality, which is based on a regression fit 
of the normal plot, gives an R-value of .9998 and a 
p-value reported as greater than .1. This seems to 
be in better agreement with the plot and supports 
our belief that the data is distributed normally.

To read more about the normality tests 
mentioned here, see Goodness-of-Fit Techniques, 
edited by D’Agostino and Stephens. Also, another 
reference is a paper entitled Normal Probability Plots 
and Tests for Normality by Thomas A. Ryan and 
Brian L. Joiner (1976) which is available on the 
Minitab website (http://www.minitab.com/resources/ 
whitepapers/index.htm).

Measurement Results
To round out the tour, we will compare our 

measurement results with some standard reference 
information. The amount of K-40 we detected in 
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Figure 5. 

Table 2. Character Histogram; Histogram of C1,  N = 4053 Each * represents 35 obs.

Midpoint Count
1464 6 *
1465 61 **
1466 540 ****************
1467 1690 *************************************************
1468 1423 *****************************************
1469 313 *********
1470 18 *
1471 2 *

Figure 6.
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our analysis agrees with the data found in the 
periodic table and the chart of the nuclides. I have 
outlined the information and calculated an 
estimate for the amount of radioactivity that is 
expected in our sample of the salt substitute.
• .0117% of natural potassium is radioactive 

potassium 40 (periodic table).
• Potassium is 50% of the salt substitute (from 

product label).
• Our sample of salt substitute weighs 578 

grams. 
• The specific activity of K-40 is 1E-5 Curies/

gram (Ci/gram). (Handbook of Health Physics).
• 1 Curie = 3.7E10 disintegrations per second. 

(Handbook of Health Physics).
• Efficiency of our detector for this sample = 

0.01066 counts per gamma (prior calibration)
• The counting time for this sample was 360 

seconds.
• The number of counts in the 1460.8 keV peak 

was 4053.
• The number of 1460.8 keV gammas per K-40 

disintegration =0.1067 (Handbook of Health 
Physics).

.000117 * 578 grams*(50%) =  .033813 grams of  
K-40 [percentage of K-40 in natural K]

.033813 gram*1E-5 Ci/gram [grams K-40* specific 
activity]

=3.38E-7 Ci [K-40 radioactivity in the sample]
= 338,130 pico Ci. (pCi) [unit conversion]
338,130 pCi / 578grams = 585 pCi/gram [K-40 

radioactivity per gram of specimen]

Based on standard reference material, the 
amount of K-40 radioactivity we expect to see in a 
gram of salt substitute is 585 pCi. 

Our measurement of the sample showed:
4053 counts / 360 seconds = 11.2583 counts/ 

second
(11.2583 counts/second) / (0.01066 counts/ 

gamma) = 1056.129 gammas/second
(1056.129 gammas/second) / (0.1067 gammas/ 

disintegration) = 9898.11 disintegrations/ 
second

(9898.11 disintegrations/second) / {3.7E10 
(disintegrations/ second)/Ci} 

=2.68E-7 Ci
(2.68E-7 Ci) / 578 grams = 4.63E-10Ci/gram
=463 pCi/gram

The result of our measurement is 463 pCi/
gram. That translates to about 16 potassium 40 
atoms self-destructing every second per gram of 
our sample. A commercially produced software 
package calculated a value of 437 pCi/gram ± 
5.6%. The confidence interval is calculated by 

considering the variances for all measurement and 
calibrations. The results of our measurement are 
within reasonable agreement with the references 
when one considers the allowed variability on food 
labels. So yes, salt substitute contains small 
amounts of radioactivity, but so do all foods high in 
potassium, such as bananas.

Conclusion
With the aid of some salt substitute, we have 

taken a brief look at the intersection of statistics 
and gamma spectroscopy.  We discussed the 
properties of gamma counting which allow us to 
model it as a Poisson process. The shapes of the 
gamma peaks being investigated are Gaussian. In 
fact, almost all of the tools used to analyze the data 
are statistical methods. Even the analysis report 
should please the statistician. Accompanying all 
measurements are well-founded confidence 
intervals and in the MDA value, an indication of 
the “power” of the analysis. This brief introduction 
to gamma spectroscopy shows why I say that this 
little corner of the physics world is almost all 
probability and statistics.
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Introduction
The College Board Advanced Placement 

Program consists of 33 college-level courses and 
exams in 19 disciplines designed for highly 
motivated high school students. Five of these 
courses are in the mathematical sciences–Calculus 
AB, Calculus BC, Computer Science A, Computer 
Science AB, and, most recently, Statistics. This past 
year, the AP Statistics program’s fourth, was 
another year of remarkable growth. The number of 
students taking the exam has more than 
quadrupled from about 7500 in 1997 to more than 
34,500 in 2000. Students from 2,242 high schools 
took the exam, and students requested that scores 
be sent to 1,381 different colleges and universities. 
Males and females were nearly equally represented 
among the exam takers, with women accounting 
for 49% of the exams.

The AP Statistics course is a forward looking 
course that is firmly grounded in data analysis, and 
the AP exam reflects this focus. The exam consists 
of a multiple choice section and a free response 
section. The free response section is made up of 5 
open-ended questions and one longer investigative 
task that requires integration and synthesis of 
multiple concepts. The exam itself is challenging, 
and requires that students not only employ 
appropriate statistical methods, but also that they 
demonstrate statistical thinking and clear 
communication.

The free response section of the exam was 
graded at a week-long reading held this year at the 
University of Nebraska at Lincoln. One hundred 
and fifty-five university and high school statistics 
teachers participated in the reading. The free 
response questions were scored using holistic 
rubrics that allowed for scores ranging from 0 to 4 
on each question.

Exam Results

Table 1 summarizes the scores on each section 
of the exam, as well as the overall scores. There 
was a perceived decline in student performance 
again this year, but this is not too surprising given 
the rapid growth and the number of schools and 
teachers participating in the program for the first 
time this year. Student performance on the 
multiple-choice section was lower than last year, 
and lower scores were also observed on a set of 15 
multiple choice questions that have been used on 
previous exams. These questions, called equating 
questions, are used as a basis for comparison of the 
current cohort of students with those from 
previous years. Although the mean score on the 
free response improved this year, this was primarily 
due to the fact that there were two questions that 
involved constructing and interpreting graphical 
displays and students found these to be fairly easy. 
In spite of the fact that the mean score was higher, 
performance on the other four free-response 
questions, and particularly on the investigative 
task, was disappointing. We hope to see student 
performance improving in the coming year. 

The Free Response Questions
The free response questions from the 2000 

exam covered topics in descriptive statistical 
methods,  inferential  s tat ist ical  methods, 
probability, and experimental design. Question 1 
assessed the student’s ability to interpret simple 
graphical displays. It was a fairly straightforward 
question, and students tended to score well on it. 
To receive full credit for this problem, the student 
needed to describe both the effect of each of two 
pain relievers and how the effect was related to 
dose. A complete answer required both a 
recommended drug and dose, an explanation of 
why one drug was chosen over the other, and a 
justification of the selected dose.

Question 2 evaluated the student’s knowledge 
of the basic assumptions necessary for inferential 
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procedures to be valid. To correctly answer this 
question, the student needed to be able to state the 
assumptions required for a small sample 
confidence interval for a population mean and to 
evaluate whether these assumptions were 
reasonably met for the scenario described. While 
many students stated and checked the assumption 
of normality of the population distribution, to 
receive full credit for this problem it was also 
necessary to recognize that a random sample of 
footprints was not equivalent to a random sample 
of adults (the population of interest).

Question 3 determined whether a student 
could construct an appropriate graphical display 
given discrete numerical data for each of two 
groups and then use the graphical display to 
describe the similarities and differences between 
the distributions for the two groups. There were 
several different types of graphs that could be 
constructed using the given data, and any one that 
allowed for easy comparison of the distributions 
was acceptable. Students were expected to 
compare the two distributions with respect to at 
least two of center, shape, and spread. Students 
seemed to find this question to be relatively easy, 
and scores on this question were high.

Question 4 evaluated whether the student 
could carry out a test of hypotheses and state 
conclusions in context. To receive full credit on this 
question, the student needed to state hypotheses, 
identify an appropriate test procedure, check (not 
just state) any necessary assumptions, compute the 
value of the test statistic and the associated P-value 
(or rejection region), and then, based on the result 
of the test, give an appropriate conclusion in 
context. The student was also expected to recognize 
that the study was an observational study and that a 
cause-and-effect conclusion was not appropriate.

Question 5 assessed understanding of some of 

the basic principles of experimental design, 
including randomization, blocking, and the 
concept of blinding. Many students did not have 
an adequate understanding of blocking, and as a 
result had difficulty with this question.

Question 6 was the exam’s investigative task. 
As such, its purpose was to evaluate the student’s 
understanding in several course topic areas and to 
assess ability to integrate statistical ideas and apply 
them in a new context. This year’s investigative 
task involved statistical inference, probability and 
the concept of independence, and bivariate 
graphical representation. It was a great problem, 
and the poor student performance on this question 
was the BIG disappointment of this year’s exam. 

Some General Comments on Exam 
Performance

The following comments are offered in the 
hope that this report will help teachers better 
understand the expectations of the Advanced 
Placement Statistics course and assist them in 
preparing students for the AP Statistics exam.

As was the case in previous years, student 
performance tended to be stronger on the 
mechanical and computational aspects of problems 
than on parts that required interpretation or 
conceptual understanding. Communication of 
results was often weak, and many students failed to 
answer questions in context. (Explanations and 
conclusions in context were always necessary for a 
complete answer.) Surprisingly few students were 
able to give a correct interpretation of a confidence 
interval.

Assumptions required for inference continued 
to be a problem area. More students stated 
assumptions when carrying out a hypothesis test, 
but  they didn’t  a lways understand that 
assumptions must also be checked. Very few 

 26    STATS #31  ■  SPRING 2001

Table 1: Summary Statistics for Raw AP Scores

  1997 1998 1999 2000

Composite Score (100)
 Mean 46.99 44.15 37.36 37.53
 Standard Deviation 18.95 19.57 18.71 14.77
Free Response Section (50)
 Mean 16.62 17.71 15.82 18.34
 Standard Deviation 9.67 10.49 10.14 6.89
Multiple choice Section (50)
 Mean 30.47 26.55 21.62 19.26
 Standard Deviation 10.45 10.30 9.67 9.22

Raw composite scores are used to determine the score reported to the student (1, 2, 3, 4, or 5). Table 2 gives the 
distribution of reported scores for the four years the exam has been given. The percent of 5's and 4's is somewhat lower 
than in previous years, a consequence of the weaker student performance in 2000. Most colleges and universities that 
give credit for Advanced Placement award credit to students who score 3 or higher on the exam. Some universities only 
grant credit to those scoring a 4 or 5.
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recognized that assumptions also need to be 
addressed when constructing confidence intervals.

Conclusions
The implementation and acceptance of the 

Advanced Placement Statistics program has been 
one of the most important developments in 
statistics education at the high school level in many 
years. In spite of the fact that the program is 
experiencing some “growing pains,” those involved 
with the program agree that it has been a great 
success. Many people have contributed to its 
current success–particularly the large number of 
high school teachers who have risen to the 
challenge of teaching a new and demanding 

course. They have combined enthusiasm and 
excitement with hard work to make the AP 
Statistics course a challenging and worthwhile 
course for their students. With the statistics 
community becoming more involved with the AP 
program and teachers gaining more experience 
with data analysis and some of the more abstract 
concepts of statistics, the future for AP Statistics 
looks bright indeed!

For more information on the AP Statistics 
Program, including the course description,  
released exam questions, and grading rubrics, 
check out the College Board web site at www.
collegeboard.org/ap/statistics .
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Table 2: Reported Score Distribution

 Reported Score 1997 1998 1999 2000

 5 15.7 13.7 11.1   9.7
 4 22.1 21.4 20.3 21.6
 3 24.4 24.6 25.8 22.4
 2 19.7 18.6 20.9 20.6
 1 18.0 21.8 21.9 25.7

Outliers, from page 29
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For this issue’s column my mind has been 
wandering to thoughts of word games and other 
arcane pursuits.

STATS in License Plates
Bradley Efron, Stanford University professor 

and developer of the bootstrap method, told me of 
a game that he plays to help pass the time while 
driving. He “collects” sequential three-digit license 
plate numbers. He started by looking for “001” as 
the last three digits on a license plate, then looked 
for “002” and has continued for years. When I told 
him that I wanted to mention his hobby in this 
column, he replied that he had just spotted “817” 
that morning. Brad mentioned that one frustration 
of this hobby is that it often seems like the 
numbers just past the one you’re looking for come 
along much more often than the target number. He 
decided to study this apparent phenomenon at one 
point, so he kept track of sightings of the number 
in question and the one immediately past it. He 
found that occurrences were indeed about 50/50 
and attributed the frustrating feeling to the fact that 
the next several numbers beyond the target, not 
just the one immediately past, contribute to the 
frustration. [Assignment 1: Get started on your 
own collection of license plate numbers! 
Assignment 2: If you know of similar hobbies 
about collecting numbers, please let me know.]

When I first heard this story, I wondered 
whether the proliferation of “vanity” license plates 
in recent years has made it harder for Efron to 
collect these numbers. Then I began thinking 
about whether I have even seen a vanity plate 
whose message was related to statistics. I don’t 
believe that I have, but this led me to imagine what 
a statistics vanity plate might say. On the 
unimaginative end of the spectrum are STATGUY 
and STATGAL, but a more creative devotee of John 
Tukey’s work might choose 2KEYFAN. An advocate 
of maximum likelihood estimation might say 
MLE4ME, and a statistician who analyzes data with 
pr ior  and poster ior  dis tr ibut ions might 
economically select BAYCN (“bay-see-en”). A more 
generic statistical option might be STM8R 
(“estimator”). [Assignment 3: Please let me know 
if you have seen any statistics-related vanity plates. 
Assignment 4: Create and let me know of better 
(how could they not be?) statistics-related vanity 
plates than my suggestions.]

STATS in Anagrams

Playing with words in this manner has made 
me think of anagrams for some reason. An 
anagram is a rearrangement of the letters in a word 
or name to form other words or names. For 
instance, some of the anagrams that can be formed 
by rearranging the letters in my name include 
“nasal normals” and “also snarl man”. Table 1 
includes twelve anagrams resulting from the term 
“statistical science.” [Assignment 5: Pick out and 
let me know your top three favorites from this list.]

Table 2 contains anagrams for ten well-known 
statisticians. [Assignment 6: Determine the name 
corresponding to each anagram.] If you would like 
some hints as to the identities of these statisticians, 
I will provide clues for half of the ten. One is 
currently President of the ASA. Another recently 
became Editor of the Journal of Statistics Education. 
A third is a best-selling textbook author. A fourth 
“collects” license plate numbers. A fifth was more 
famous as a nurse than as a statistician. Answers 
appear at the end of the column.

These anagrams were found using the program 
at www.anagramfun.com. [Assignment 7: Use this 
program to find anagrams of your own name, and 
send me your favorite. Assignment 8: Find 
anagrams of the names of other famous statisticians 
or of common statistical terms. Please send me 
your favorites.]

STATS in Philosophy
Playing these word games has turned my 

thoughts to matters philosophical, where one can 
play games not only with words but with ideas. I 
once reviewed a philosophy book by John Earman 
with the wonderful title Bayes or Bust? and the less 
captivating subtitle A Critical Examination of 
Bayesian Confirmation Theory. I enjoyed reading 
about applications of the Bayesian paradigm to 
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philosophical problems. One principle that the 
author mentioned as a reasonable expectation for a 
theory of confirmation is that a confirming instance 
of a hypothesis should increase, or at least not 
decrease, the probability that the hypothesis is 
true. For example, if one hypothesizes that all of 
the taxicabs in a city are yellow, then observing a 
yellow taxicab (a confirming instance of the 
hypothesis) should not cause the probability of the 
hypothesis to decrease. While this principle seems 
eminently reasonable and desirable, it is easy to 
construct examples where it fails. I offer one based 
on the classic “matching problem” of probability 
theory.

Suppose that three executives bump into each 
other and drop their cell phones. Completely 
confused, each picks up a phone at random, so all 
six assignments of phones to people are equally 
likely. Consider the hypothesis: “Nobody gets the 
correct phone.” [Assignment 9: Before reading 
further, determine the (prior) probability of this 
hypothesis.] I shall denote the six possible 
outcomes as 123, 132, 213, 231, 312, and 321, 
where ijk means that the first executive picks up 
phone i, the second phone j, and the third phone 
k. Only two of these six possibilities leave every 
person with the wrong phone, so the prior 
probability of the hypothesis is 1/3. Now suppose 
that the first executive tries her phone and finds 
that it really belongs to the second executive. 
[Assignment 10: Before reading further, determine 
the updated probability of the hypothesis in light 
of this evidence.] Since there are now only two 
equally likely possibilities left in the sample space 
(213 and 231), the probability is now 1/2 that the 
hypothesis is correct. Thus, this confirming 
instance (the first executive not getting the correct 
phone) has indeed increased the probability of the 
hypothesis from 1/3 to 1/2. Now suppose that the 
second executive tries his phone and finds that it 

belongs to the first executive. [Assignment 11: 
Before reading further, determine the updated 
probability of the hypothesis in light of this 
evidence.] We now know 213 to be the outcome of 
this mishap, so executive 3 has the correct phone 
and the hypothesis is false. Thus, even though we 
have had two confirming instances of the 
hypothesis (two people were discovered to have 
the wrong phone), the probability of the 
hypothesis has decreased to zero.

STATS in Stuffed Animals
Now that my brain is really tired from not only 

playing word games but trying to think 
philosophically for a few minutes, I will conclude 
this column with a childlike, but not a childish, 
example. Tom Short of Villanova University (whose 
anagram using “Thomas” appears in Table 2) has 
developed an activity that he presents to elementary 
school children to introduce them to some 
important ideas of statistics. Tom brings his 
collection of teddy bears, numbering in the dozens, 
to the children’s classroom. He tells them that he is 
starting a company to make and sell teddy bears 
and that he needs to pick one bear for his 
advertisement. He tells them that he wants this bear 
to be as representative as possible of all the bears in 
the collection, and he asks for suggestions. Children 
typically call out their favorite bear at this point, 
and that bear has something special about it. Tom 
asks if the favorite bear is really typical, and the 
children realize that its special-ness actually makes 
it not typical. At this point Tom asks the students to 
be a bit more systematic and to think of bears that 
can be ruled out as candidates for the typical bear. 
Children respond by suggesting many bears that are 

Table 1: Anagrams of "Statistical Science"

a stint ecclesiastic assist acetic client cats nastiest icicle cite cacti saltiness
ecstatic lice stains italics accents ties tactile ascetic sins classic taste incite
satanic sect elicits elitist antic access stale tactic iciness insect tail ascetics

Table 2: Anagrams of Well-Known Statisticians

(a) Chef Friar Crashed (b) Sigma Lowliest (c) He Toy Junk
(d) Nasal Porker (e) Smooth Trash (f) Redone Barfly
(g) Obey Math Ass (h) Frantic Slogan (i) Often Legal Enriching
(j) Mood Varied

See Outliers, page 27




