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Our feature article in this issue comes from Chris 
Palmer, Director of the Centre for Applied 

Medical Statistics at the University of Cambridge in 
the United Kingdom. Chris makes a compelling 
argument that statistics and ethics are closely aligned, 
particularly in the planning and analysis of clinical 
trials. In addition to summarizing the key aspects of 
clinical trials and how they have developed 
historically, Chris describes strategies for adapting the 
trial design as data are collected. This strategy allows 
for treating current patients more ethically, without 
sacrificing the accumulation of information for the 
benefit of future patients. He argues that today’s 
students and tomorrow’s statisticians will have 
opportunities to apply their skills to develop more 
ethical clinical trials. We especially appreciate Chris’ 
admonition that patients should be treated less like 
fertilizer and more like ammunition; please read the 
article to decipher what he means by this statement.

Mary Ann Ritter, a retired statistician and manager 
from General Motors, shares her experiences by offer-
ing practical advice to help bachelor’s-level statisticians 
to land jobs in industry. Her suggestions are especially 
valuable since they are based on responses to a survey 
of eight non-academic statisticians about what they 
look for in their hiring practices.

One of the highlights of the year for us is always the 
annual Joint Statistical Meetings, the largest conference 
for statisticians, every August. Curious about the expe-
riences of students who attend this conference, we 
asked several students (both graduate and undergradu-
ate) to write about their reactions to last year’s meeting 
in New York City. In this issue we are pleased to present 
the perspectives of Middle Tennessee State’s Leann 
Hooge, Keeley Hutchinson, and Ileah McKee, as well as 
North Carolina State’s Venita DePuy. We hope that their 
tales will encourage more students to attend this sum-
mer’s conference to be held in San Francisco. Further 
enticement is provided by the return of the Stat Bowl 
competition to the JSM this summer, with ASA helping 
to provide travel costs for student participants, as 
described in Mark Payton’s article.

Students of statistics quickly learn that our field 
involves so many symbols that we have to make heavy 
use of the Greek alphabet to make room for them all! 
Elena Papanastasiou, a native of Greece and a faculty 
member at the University of Kansas, offers suggestions 
for dealing with this potential confusion by learning 
how to pronounce Greek letters correctly.

This issue’s Student Project article comes from 
Katherine Van Schaik, a junior in the Discovery Math 

and Science Magnet Program at Spring Valley High 
School in Columbia, South Carolina. Katherine won 
several prizes at the International Science and Engi-
neering Fair last spring, including the ASA Award for 
Best Use of Statistics. In this article she describes her 
study of the effects of using arsenic to treat lumber used 
in playgrounds. Joe Ward, a tireless devotee of statistics 
education from San Antonio, introduced Katherine to 
STATS magazine, and Joe has written a sidebar to 
accompany Katherine’s article that offers advice about 
science fair competitions for both students and statisti-
cians. 

Our statistical sport fan Robin Lock is joined by his 
daughter Kari Frazer Lock in writing this issue’s col-
umn. Kari is a junior Mathematics major at Williams 
College and is also an accomplished figure skater who 
has performed throughout the United States and 
abroad. The Locks address a topic very near to Kari’s 
heart by using a bootstrap approach to analyze the con-
sistency of ratings awarded by figure skating judges, 
using the controversial results of the 2002 Salt Lake 
City Olympic competition as their example.

We are very pleased to introduce a new member of 
our editorial board with this issue. Josh Tabor of Wilson 
High School in Hacienda Heights, California joins our 
team and contributes an AP Statistics column about 
interpreting computer output for regression analysis. 
While we welcome Josh aboard, we also want to thank 
his predecessor Gretchen Davis for her contributions to 
STATS in the past year.

Chris Olsen offers new µ-sings in this issue, reveal-
ing that STATS readers who are also fans of detective 
fiction may enjoy a novel by Stanislaw Lem in which 
the protagonist who solves the case is actually a statis-
tician!

This issue’s Data Sleuth Mystery was contributed by 
Michael Kahn of Wheaton College, who provides data 
appearing to suggest that smokers have greater lung 
capacity than non-smokers. Please see if you can solve 
this mystery, and consider sending us your own exam-

Editors’ Column

Allan RossmanBeth Chance
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Statistics, Ethics and Trials

Some might think of statistics as a mathematical 
science all about data analysis and not at all about 
people. Well, in medical statistics in particular, such is 
far from the truth. In fact, matters of health (including 
ethics, which promotes the well being of people by 
seeking to ‘do the right thing’) and statistics come 
together in the field of biostatistics, a term I use 
interchangeably with ‘medical statistics.’ Statistics and 
ethics may seem poles apart as a pair of disciplines, 
but I believe they are more closely linked than one 
would first think: one is all about pursuing numeric-
based truth amid uncertainty as to what may, might or 
could happen; the other is all about pursuing what is 
right, also amid uncertainty, as to what must, ought or 
should happen. This link between ethics and statistics 
is seen most clearly in the way researchers, including 
biostatisticians, contribute to medical science by 
means of the controlled clinical trial (Figure 1), for it 
is here that mathematics and people meet head on. 

In this article, I review what statisticians have done 
for trials so far, including a whistle-stop tour of the 
history of trials and the necessity of randomization for 
allowing sound inference; how trials strive to keep the 
quality of clinical research as pure as possible, if not 
pure as gold; some present-day pressures that are 
mounting against trials in general; and finally some 
discussion about what statisticians may be able to do 
for trials in the future as a way of alleviating these pres-
sures. Here I describe the role of data-dependent designs, 
which have been around on paper as theoretical options 
for quite some time, but have yet to make their mark on 

research practice. In short, and in contrast to trials 
based on fixed sample sizes, these modern designs seek 
to make fullest use of emerging data within, not just 
following, a clinical trial, and for this reason are also 
known as “learn-as-you-go” designs.

One cannot and must not ignore the fact that in 
clinical research the ‘units of experimentation’ are actu-
ally priceless human beings. It is imperative to get the 
balance right between, on the one hand, individuals 
who are in the trial and, on the other, those who stand 
to benefit from the results of the trial. Incidentally, the 
term ‘guinea pigs’ would be unfair to describe those in 
the former group, as trial participants generally fare 
better than contemporaries having the same illness 
outside of trials. Those benefiting subsequently are the 
people yet to get the disease being studied, so the 
dichotomy can be thought of as best serving the needs 
of current and future patients. These are, respectively, 
the domain of individual ethics and collective ethics, terms 
reflecting primary concerns with today’s volunteers and 
tomorrow’s society at large. As noted by Pocock (1983) 
among others, clinical trials are a delicate balance 
between these often-conflicting priorities.

Randomization and Controlled Trials

What is Randomization?

Clinical trials, also known as randomized controlled 
trials (RCTs), are regarded as the “gold standard of 
medical research”. The process of randomization—
allocating treatments to patients by an external chance 
mechanism—is alone responsible for allowing doctors 
to conclude that perhaps a new treatment A is truly 
better than an old treatment B, with results that are 
beyond mere chance variation. Why is this so? 
Essentially, it is because two groups of patients are 
created, each receiving one treatment, that are 
effectively ‘identical’ bar one thing: the treatment 
received. Hence, any difference in health outcome 
recorded at the end of the trial, beyond what would 
be expected by chance, whether a matter of days or 
years later, can be ascribed to the treatment received. 
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Why is Randomization Necessary?

It takes randomization, which could literally be as 
simple as the tossing of a coin to decide group 
membership, to ensure the two groups are 
homogeneous. If we allowed human intervention to 
decide who went into which group, we would not be 
able to draw such powerful conclusions. This may 
seem counter-intuitive, but it is not. Suppose we 
thought a person’s health outcome was related to their 
age, sex, previous medical history, body mass index (a 
measure combining weight and height), smoking 
behavior, etc., then wouldn’t we be better off forcing 
the groups to be balanced with respect to this list of 
items? Why leave it to chance? 

Well, the key word in the list just cited was “etc.” 
We will never know all the other factors that influence 
someone’s health. At best, we can measure and record, 
albeit imperfectly in many cases, a number of factors 
that we think are related. We may even have evidence 
that some or all of them really do influence long-term 
health. But we can never be confident we have an 
exhaustive list of such factors, which is why we have to 
let the chance mechanism balance things out for those 
that are known and (the endless list of) those that are 
unknown. So, randomization is indispensable within 
clinical trials.

Trial Conduct

Avoiding Bias

In practice, trials are conducted with some important 
safeguards to supplement the cornerstone of 
randomization. If, for instance, it is desired to create 
groups that have an equal number of men and 
women, or of young and old people, or whatever, 
then there are ways to ensure this. Ideally subjects are 
also randomly selected from some larger population 

so the results can be generalized to a variety of people 
groups and not limited to some subgroup of the 
population. It is also necessary to ensure sample sizes 
are adequate, for if not then the law of large numbers 
will not come into play and the statistical inference 
may miss effects that are truly present.

A major difficulty in clinical trials is the need to 
overcome bias—any systematic tendency for results to 
be different from the true relationship. Sample selection 
bias is the most common problem, in that those who 
enter into a trial in a given disease area may not be truly 
representative of the entire population of people with 
that particular disorder. But bias can be more insidious 
than that, and anytime human interventions or deci-
sions are made, there is potential for bias to creep into 
a study. This is why the design stage of a study is even 
more important than the analysis stage, for then it is too 
late to correct any adverse influences on the manner in 
which data were collected and entered into the com-
puter database. 

Blinding

Keeping a trial “double-blind” is another commonly 
employed safeguard to the quality of the research 
when it is both feasible and ethically acceptable to do 
so. It means not telling the patients which treatment 
group they are in, and also withholding this 
information from the doctors (or whoever is 
responsible for) assessing their health outcomes. The 
first aspect of blinding is to prevent self-delusion in 
thinking “I’m on the new treatment, so I must get 
better.” This is related to the so-called placebo effect 
whereby people do get better just by being prescribed 
a dummy tablet, of no intrinsic effect, from someone 
wearing a white coat and stethoscope! The second 
aspect of blinding is subtler, but it ensures the 
research study has not been influenced by doctors’ 
subjective judgments and preferences. If a doctor was 
reading an x-ray, say, and had to decide whether a 
tumor had shrunk, remained the same, or grown, 
then borderline decisions could be affected—either 
consciously or sub-consciously—by knowledge of 
whether the patient was on old or new treatment. 

Double-blinding guards against this possibility and 
prevents skeptical readers of the trial results, once pub-
lished, from levying such accusations. Good science is 
all about good quality research and can be seen as an 
example, if ignored, of how “bad statistics is bad eth-
ics,” a point serving to underscore the link between the 
disciplines.

Safety Monitoring

During a trial’s recruitment phase, the conduct stage 
between design and analysis, patients are randomized 
and their chosen treatment initiated. In long-term 
trials, as often is the case for instance in cardiology or 
in many cancers, there can be a lengthy period before 
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Figure 1. Medicine and mathematics, in particular 
ethics and statistics, meet head on in clinical trials. 
[Image from University of Massachusetts Medical 
School website, permission to use requested]
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each patient reaches his or her endpoint (which is just 
as well if “failure” is really a statistical euphemism for 
death), or until the study reaches its pre-determined 
termination date. Especially if mortality is an issue, 
such trials would typically have a Data and Safety 
Monitoring Board (DSMB) checking updated trial 
results on a regular basis. The DSMB is yet another 
safeguard built into trials, since they consider any 
deaths and serious adverse events at each meeting. 
Their charge is to inform the trial steering committee 
if important differences are emerging between the 
treatment groups, with a view to stopping a trial 
“prematurely” if warranted. This is a decision invoked 
quite rarely, and after serious debate, as there are 
various penalties incurred for stopping too early, 
particularly if the trial may never be repeated again 
perhaps for ethical reasons. Generally, DSMB members 
do not know which group is which, dealing instead 
with generic labels, e.g., “Group A” and “Group B,” 
with the code only being broken if necessary. 
Sometimes this is referred to as “triple-blinding”—one 
can only hope no trial has ever accidentally been 
quadruple-blind, in which no one has a clue about 
who was in which group!

Brief History of Trials

Ancient History

A brief history of trials can extend as far back as the 
Biblical book of Daniel, circa 2600 B.C. It is reported 
(see Daniel, Chapter 1) that four young men 
requested and received a simple diet of water and 
vegetables so as to avoid ‘unclean’ food. Their 
appearance ten days later turned out to be better than 
that of other young men given a rich diet including 
wine and inappropriately idol-sacrificed meat. The 
study can perhaps be criticized through modern eyes 
for using a very small sample, having a short follow-
up duration, being unblended, and especially, being 
non-randomized. Then again, it can hardly be faulted 
for choice of publication for reaching the maximum 
readership! 

Recent History

Although there are some examples of comparative 
studies in the last three centuries, the history of 
randomized experiments is much shorter, dating only 
from the mid-1920’s and not even within medicine, 
but in agriculture. The eminent 20th century 
statistician, and indeed founding father of much of 
modern statistics, Ronald A Fisher conducted a series 
of crop field trials in the UK (1926) to determine the 
best fertilizer to apply to a field of wheat (Figure 2). 

Fisher’s methods required the use of randomization 
so that plots of land were equally distributed among 
fertilizer treatments regarding aspect, slope, rainfall, 
soil composition, (and that all-important) etc. Notice 

that in such a trial the outcome is the plant yield 
obtained at a suitably pre-defined harvest time after the 
growing season. 

This trial was the pre-cursor to the first use of ran-
domization in human beings some two decades later. 
Well-known British medical statistician Austin Bradford 
Hill convinced doctors, in part because the novel treat-
ment was in short supply, to employ randomization of 
the drug streptomycin together with bed-rest or else 
bed-rest alone in a study involving patients with pul-
monary tuberculosis. This has been acknowledged as 
the first ever RCT to be published, appearing in the 
British Medical Journal in 1948.

Present-Day Trials

Today’s trials have evolved and matured somewhat 
since the middle of last century. You may be surprised 
to learn that there is a journal devoted to Controlled 
Clinical Trials and even an international organization 
of interested professionals called the Society for Clinical 
Trials, set up some 25 years ago. In drug development, 
there are four accepted stages or phases of trials, 
labelled from I-IV, ranging from first tentative use in 
man, up to large-scale, post-marketing surveillance 
studies to detect rare or long-term side effects. The 
RCT is firmly established at the heart of “evidence-
based medicine,” with randomized evidence rightly 
considered to be the best available type for deciding 
whether interventions work and hence for justifying 
doctors’ treatment decisions for their patients. 

However, at the same time, trials of today are fun-
damentally quite similar to those of fifty years ago, in 
that they typically involve equal allocation of treatments 
to patients, generally after performing a power calcula-
tion to determine a target number of patients to be 
recruited. So, in a two-treatment comparative trial, half 
the patients customarily receive the standard, half the 
experimental treatment. With the possible exception of 
DSMB committee members and a statistician conduct-
ing an interim analysis, no one looks at the results until 

STATS 36  ■  WINTER 2003     5

Figure 2. Fields of wheat in controlled studies to 
determine most effective fertilizers involve non-
precious resources. [Image from Texas A & M 
University website, permission to use requested]
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all the patients have been randomized and followed up. 
At the end of the trial it is possible that the experimen-
tal treatment is declared a statistically significant 
improvement and heralded as a clinical success. 

It is an ethical problem, however, if as mentioned 
before ‘failure’ means the patient died and one can look 
back with some remorse wondering “if only we had 
come to this conclusion sooner perhaps we could have 
saved some lives.” Even if the outcome is not as serious 
as death, the argument persists: could fewer patients in 
the study have suffered on the way to reaching a valid 
conclusion?

This last question has motivated much research by 
ethically minded statisticians. Ironically, this work dates 
back at least as far as the first modern clinical trial, for 
the whole area of “sequential analysis” traces its history 
to the 1940’s, World War II and U.S. government-con-
tracted statistician Abraham Wald (1947). His work 
was also not in the medical area of application, but in 
ammunition testing (Figure 3), an altogether different 
example of seeking to cope with precious and limited 
resources. Medical application of sequential methods 
does seem entirely appropriate. After all, patients arrive 
to be treated sequentially (they are not all waiting in 
line outside the doctor’s office or hospital clinic at the 
start of a trial!) and similarly, results from some are 
available sooner than from others.

The rationale for sequential trials involves looking 
carefully at data as they accrue with a view to stopping 
just in time. Hence, the number of experimental units 
required is not fixed in advance but is a random vari-
able. Theory shows that the expected number of 

patients involved in a sequentially analyzed random-
ized controlled trial is less than the corresponding fixed 
sample size trial, for any given power and level of sig-
nificance (Jennison and Turnbull, 2000). It is possible, 
when treatment groups fare broadly equally well, for a 
sequential trial to need slightly more patients overall 
compared with a trial using traditional design, but this 
would be quite unusual. 

For better or worse, the clinical trial as conducted 
and analyzed today is not in Wald’s style of testing 
ammunition but rather in Fisher’s application of fertil-
izer to fields of wheat. These two metaphors illustrate 
the fundamental difference between the statistics 
behind clinical trials that strive to learn-as-they-go and 
those that wait, literally, until harvest time before begin-
ning to make scientific inferences. Personally, I believe 
that, contrary to normative practice, wherever possible, 
people who volunteer for clinical trials should be 
treated with the same respect as afforded the ammuni-
tion, and not the fertilizer.

Data-Dependent Designs
Here I outline four broad categories of data-dependent 
designs, all of which are in the spirit of learning-as-
they-go, as opposed to ignoring intermediate data. I 
describe each in turn along with some specific 
features when applied to clinical trials.

Sequential Designs

Following Wald’s pioneering research, sequential 
designs have evolved as sophisticated tools to assist 
those on DSMBs and hence can be considered 
mainstream, in contrast to the remaining design types 
discussed below. It should be said though that these 
methods are not routinely implemented as primary 
analytical tools for driving trials. Instead, at best, they 
are used as ‘back seat drivers’ to exert indirect 
influence on trial conduct. How do they do this? 
Essentially, as data accumulate, a test statistic can be 
plotted on a graph of treatment difference vs. time, 
and trial recruitment can be recommended to 
terminate just as soon as a pre-determined boundary 
is crossed. 

This boundary may take on various shapes, the 
simplest being triangular with two possible options (see 
Figure 4). Either treatment A or B is declared better 
depending on which side of the triangle is crossed first. 
To allow for a third, non-conclusive option with a 
pre-determined maximum trial sample size the bound-
ary outline is modified to include a vertical line at a 
given point on the time (strictly “information”) axis. 
The idea is to stop the trial in favor of treatment A, say, 
if the upper line of the boundary is crossed first; B if the 
lower line; or else, conclude no clinically relevant dif-
ference between A and B if the vertical line is reached 
first. 

There are variations on this theme with rules such 
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Figure 3. In World War II, ammunition had to be 
tested but obviously one only wanted to perform 
controlled explosions for a limited number of shells 
to conserve precious resources. [Image from Dr 
Robert E Sterling Collection, Joliet Junior College, 
Illinois, used with permission]
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as those derived by Pocock and by O’Brien and Fleming 
being popular examples. Thus it is not necessary to 
update the graph after every single observation. One 
can apply rules, called “group sequential methods,” that 
update after small batches of results become available. 
For more details refer to Jennison and Turnbull’s helpful 
textbook (2000). Statistical software for implementing 
these rules is readily available in several commercial 
packages (e.g., EaSt, PEST, S+SeqTrial). 

One disadvantage with sequentially designed 
experiments is that their usefulness, namely their 
potential to learn while in progress, is self-limiting to 
trials having relatively rapid endpoints. Thus a sequen-
tial trial offers little benefit over a traditional, fixed 
sample size trial if the outcome remains unknown until 
years after randomization. For example, this may be so 
in breast cancer, but is not a limitation in emergency 
medicine or in rapidly fatal diseases. 

Bayesian Designs

Here investigators start by eliciting a prior distribution, 
either from a panel of clinical experts or from a 
reasonable selection of available theoretical 
distributions thought to mimic reality in terms of 
treatment success distributions. For example, a beta 
distribution with suitably chosen parameters can 
represent initial beliefs about a treatment’s efficacy 
ranging from negatively skewed to uniformly 
distributed to positively skewed. In practice, there is 
virtue in choosing a prior that makes the experimental 
treatment appear initially a weak contender, so that 
positive results in favor of the treatment are not too 
dependent on initial choice of prior. As the patients’ 
results accumulate, the conditional distribution given 
the data thus far is evaluated—the so-called posterior 
distribution, amalgamating the prior and the likelihood. 
Inference is based on the posterior, including the 
evaluation of credible intervals, analogous to 
confidence intervals in the frequentist context. 

An advantage is the ease of interpretation of these 
intervals for they have more intuitive meaning to clini-

cians and patients. A disadvantage is the general lack of 
awareness of Bayesian methods since these are, when it 
comes to schools of statistical thought, the kindergarten 
in contrast to the senior high of frequentist methods. 
This is reflected in the comparative lack of statistical 
textbooks, courses and software aligned to the Bayesian 
paradigm. Spiegelhalter et al (1994) provide an excel-
lent overview of Bayesian methodology applied to 
clinical trials. Some see the subjective or arbitrary 
nature of the prior distribution involved as a weakness; 
others regard it as a positive opportunity to incorporate 
provisional information about the potential new treat-
ment. Whether Bayesian or frequentist analyses should 
be preferred within the context of clinical trials is, I 
believe, another ethical matter discussed further else-
where (e.g., Palmer, 1993).

Decision-Theoretic Designs

Some experimental studies can be conducted with the 
resulting inference, in terms of how the information 
will be used to reach a practical decision concerning 
which treatment to recommend, as the driving force. 
For example, one can specify a criterion such as 
minimizing expected successes lost, or maximizing 
successes gained, over the course of a pre-determined 
number of future patients, the “horizon,” within and 
outside a comparative trial. Another criterion could be 
maximizing the probability of correct selection of 
superior treatment. Either way, the focus is on the 
pragmatic need to make a decision to use one of the 
treatments or not once the trial is over, in a direct 
attempt to balance the needs of current and future 
patients. Colton (1963) was among the first to 
advocate decision-theoretic trials.

It is possible to discount future patients by putting 
more weight on present results, although this whole 
area can become mathematically quite intricate, espe-
cially when modelling with unconstrained “multi-armed 
bandits” in the context of deciding among several treat-
ments (Berry and Fristedt, 1985). Nevertheless, 
practical simplifications can be incorporated, such as 
limiting designs to equal allocation among remaining 
treatments. In the case of just two treatments this 
amounts to allocating pairs of treatments until it is opti-
mal, by whatever criterion, to cease the comparative 
stage and switch all remaining patients within the hori-
zon to the preferred treatment.

Objections to the subjective nature of prior distri-
butions involved in this type of decision-theoretic 
framework can be alleviated, for example, by appealing 
to minimax criteria. This means implementing a design 
that has good theoretical properties across a broad 
range of priors. Computer software allowing such 
designs to be implemented is limited, contributing to 
the current lack of use of such methods in practice.

Response-Adaptive Designs

STATS 36  ■  WINTER 2003     7

Figure 4. Sample sequential design to choose 
between Treatment A and Treatment B
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The (response-) adaptive design is the most extreme 
type of data-dependent design, for it incorporates the 
information accruing from the data to modify the 
treatment allocation probabilities away from 50:50 in 
the case of two treatments. For example, the trial 
would start with equal allocation, but as the data 
begin to favor one treatment even slightly, the 
adaptive design increases the odds of the next 
allocation being in the favorable treatment. In practice 
it works like this. Imagine a bag containing an equal 
number of red and blue balls. A red ball drawn 
indicates the next allocation is to treatment A; a blue 
ball, treatment B. If a success occurs a ball of the 
appropriate color is added to the bag before the next 
drawing, and hence treatment allocation, takes place. 

One disadvantage is illustrated by the rather poor 
prototypical example of a mid-1980’s trial (Bartlett, 
Roloff, and Cornell, 1985), involving extra-corporeal 
membrane oxygenation (ECMO) therapy, which has 
received much attention in the statistical and medical 
literature. Ethicists, clinicians and statisticians have all 
contributed to the debate about this particular trial 
(Royall, 1991). It involved critically ill new-born babies 
and the relevant outcome in question really was a mat-
ter of life and death. In retrospect, it was clearly a 
mistake to begin this trial with precisely one ball of each 
color in the bag instead of, say, ten of each. What 
ensued was a highly unbalanced distribution of treat-
ment allocation (for ECMO babies generally lived, 
unlike many of those not on ECMO therapy) rendering 
sensible inference difficult, if not impossible. 

However, this early example should not be a reason 
to abandon adaptive designs, just as clinical trials were 
not abandoned after a famous 1930’s experiment in 
Lanarkshire, Scotland went awry (Student, 1931). In a 
study to assess growth, researchers had unwisely 
allowed teachers to choose which children would 
receive free, supplementary milk. Teachers systemati-
cally assigned the poorer children to the “extra milk” 
group. This confounded the treatment with socio-eco-
nomic background, making it impossible to isolate any 
treatment effect. 

Adaptive designs are the most controversial of the 
four types presented here. This is largely because they 
appear to react too quickly to early data, which may be 
subject to systematic bias or time trends. Also, if not 
careful, they can begin to adapt too swiftly even to 
chance results. There is also the criticism that if one 
treatment happens to be a placebo, why should any-
thing change after a success or a failure on such an inert 
substance? Nevertheless, with suitable cautions and 
awareness of the issues involved, adaptive designs can 
be a highly effective and ethically appealing design, 
despite the relative dearth of positive examples of their 
actual use so far. For further reading on adaptive 
designs, refer for example to some conference proceed-
ings edited by Flournoy and Rosenberger (1995).

Discussion

Here I raise three key questions of direct relevance to 
tomorrow’s generation of statisticians. Respectively, 
these concern why, when and how to implement data-
dependent designs in the practice of clinical trials. 
More details and further arguments can be found 
elsewhere (Palmer 1999; 2002).

Why Use Data-Dependent Designs? 

The primary reason for using data-dependent designs 
is for the ethical advantage in terms of how patients in 
trials are regarded, without compromising the 
scientific rigor or usefulness of studies for the sake of 
future patients. There are also secondary benefits, 
notably derived from the side effect of expecting fewer 
patients to be involved in trials. 

Pharmaceutical companies, and other trial spon-
sors, would be glad to spend less money on this aspect 
of research and development, assuming that regulatory 
bodies, such as the US Food and Drug Administration, 
can be provided with evidence from non-standard, 
randomized designs of sufficient reliability. 

• Patients and their families would be pleased to 
know that their needs were being considered 
foremost within the trial. 

• Volunteers in trials may benefit in some cases from 
increased chances of receiving the superior 
treatment. 

• Research physicians may find it easier to persuade 
people to take part in clinical trials in the first 
place, helping doctor-patient relationships become 
less one-sided.

• Medical science itself may benefit from expediting 
the drug development process.

One can add to this list some negatively-motivated 
reasons. For instance it seems a shame that modern 
clinical trials have not moved on from the agricultural 
trials pre-dating them. Failing to put into practice the 
fruits of five decades of statistical research is almost 
criminal--why should trial designs and analyses today 
be limited to techniques available in the 1920’s? Would 
it not be called scandalous if medicine, or any other 
discipline for that matter, were so constrained? 

It is more than a pity that much of modern statistics 
and computing goes untapped in such a key area of 
application. Armitage (1985) put it this way (my ital-
ics): “[Learn-as-you-go-designs] are just the sort of 
contribution that statistics should be making to the design, 
execution and analysis of clinical trials….” He goes on to 
lament “such lack of contact between theory and practice 
seems to me quite deplorable.” These sentiments speak 
even louder now that the best part of two more decades 
has elapsed, yet things are only slowly beginning to 
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progress.
A related disappointment is that data-dependent 

designs depend on not only modern theory, but they 
also exploit modern technology since they require rapid 
communication of data back and forth between the 
statistical centre and the point of contact between doc-
tors and patients. It used to be argued that 
learn-as-you-go designs were too cumbersome since it 
is true they carry heavier logistical, practical and admin-
istrative burdens. However, with the advent of mobile 
communications technology (e-mail, cellphones, laptop 
computers, etc.) now so commonplace in many parts of 
the world, many of these previous barriers are dimin-
ishing. Admittedly, there remain minor difficulties 
associated with drug distribution and budgeting for 
unknown numbers of trial participants, but these objec-
tions are but poor excuses to neglect implementing 
modern designs in those circumstances when they are 
relevant and appropriate. So, when is this the case? 

When to Use Them? 

There are two separate aspects to this question. First, 
for what sort of clinical trials are data-dependent 
designs best suited? (Clearly, there are certain 
situations for which they would be unsuitable.) 
Secondly, when in real time is a suitable opportunity 
to start making more routine use of them?

To answer the latter question first, I suggest the 
time is now ripe, in this, the first decade of the 21st 
century. There are numerous reasons for this related to 
the feasibility of rapid data transfer as just mentioned, 
but more importantly the growing pressure mounting 
on today’s clinical trials. For the RCT is not without 
critics. Increasingly, influential scientists are realising 
the clinical trial as conducted today is not necessarily 
the best thing since sliced bread (Horton, 2001). 

When considering the changing nature of doc-
tor-patient relationships; the role of the Internet raising 
expectations of 21st century patients; the growth of 
patient support or advocacy groups demanding that 
their needs be given higher attention than ever before; 
the perceived and actual threats of medical malpractice 
lawsuits extending into the realm of trials that have 
allegedly harmed individuals; problems experienced 
with recruiting sufficient numbers of patients in large 
trials; and so the list goes on, it really does seem prime 
time for a paradigm shift in the way trials are per-
formed. I reckon that introducing data-dependent 
designs more routinely would help alleviate many of 
these problematic pressures (Palmer, 2002).

To answer the former question about the type of 
trials amenable to data-dependent designs, in short, 
arguments supporting their use are strongest whenever 
individual ethics outweigh collective ethics. For exam-
ple, this is the case for early phase trials seeking to 
combat a serious or life-threatening illness (Palmer 
1993; 1999). Data-dependent designs are most appro-

priate for rare diseases that have rapidly known 
outcomes, at least relative to the patient accrual rate. 
Hence the rarer the disease, the longer the anticipated 
interval before the next patient is recruited, allowing an 
outcome slightly more distant in time than immediate. 
Furthermore, the greater concern ought to be given to 
those within the trial if it is a relatively rare disease 
(recall the balance of today’s vs. tomorrow’s patients). 

However, once familiar with the application of 
data-dependent designs there is no intrinsic reason why 
they cannot be used in a wide variety of settings, includ-
ing later trial phases and more common, serious 
illnesses. This is particularly true if studies form part of 
a prospectively planned program of research and con-
tribute, therefore, to a future meta-analysis of a series of 
high quality randomized clinical trials covering a diver-
sity of patient types, geographical and temporal settings, 
and study designs.

How to Use Them?

Given the backdrop of very few practical examples 
thus far of trials that have been governed by data-
dependent designs one cannot expect an overnight 
conversion among trialists. What will help the cause, 
without doubt, would be one or two good examples, 
wherein it is clear for all to see the benefits of applying 
learn-as-you-go techniques in specific clinical trial 
contexts. I am aware of several such ongoing examples 
and eagerly await feedback from the medical and, in 
due course, regulatory authorities, not to mention the 
oft-neglected patients and their family members. For 
regulatory purposes, there may need to be an 
intermediate step between present-day extremes of 
considering a new drug as ‘investigational’ one day, yet 
‘fully licensed’ for marketing the next, which seems a 
remarkably abrupt change. This could be 
accomplished by introducing a graduated licensing 
scheme for new drugs, as I suggest in Palmer (2002).

Conclusion
My hope is that there will soon be a watershed and 
that once the methods of data-dependent designs are 
seen to be workable and advantageous, there will 
follow a flood of applications across many disease 
areas in those situations where they are most 
appropriate. Perhaps there will even be a day when 
statisticians look back with amazement at how long it 
took to start routinely conducting clinical trials in a 
data-dependent manner, and if that happens, who 
knows what else might happen? Just maybe, non-
statisticians of tomorrow may even get to think of our 
subject as all about people, and not just data 
analysis…
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Introduction

Traditionally, students pursued graduate degrees 
before embarking on careers in statistics. Despite this 
focus on advanced degrees, many people are now 
graduating from college with bachelor’s degrees in 
statistics. In the United States there were 504 
bachelor’s degrees granted in statistics in 1996-97. 
People receiving bachelor’s degrees in statistics have 
choices when they graduate—they may go to graduate 
school, seek immediate employment, start their own 
business, or they may attend a professional school 
such as medical, law or business school. This article 
offers advice for students who will seek employment 
immediately after graduation. While these are the 
skills most likely sought by employers, rest assured 
that no employer expects a student to have all of 
them. 

Where Does This Advice Come From?
Eight non-academic statisticians were asked six 
questions about employment for new statistics 
graduates. They answered the questions as well as 
offered their own ideas. The contributors came from a 
variety of companies and fields of application:
—Baxter Healthcare Corporation (pharmaceutical)
—Delphi Automotive (quality)

—Ernst & Young (management consulting)
—Intel Corporation (manufacturing)
—Merck & Company (pharmaceutical basic research)
—National Agricultural Statistics Service, US 
Department of Agriculture (government)
—Southwest Technology Consultants (consulting)
—Westat (consulting)

The six questions about positions for new statistics 
graduates were

—What jobs are out there? (Position titles)

—What do these statisticians do? (“Key job elements”)

—What do students need to know? (Candidate 
qualifications)

—What do they REALLY need to know? (Detailed 
qualifications)

—What’s most important? (Rating of qualifications)

—Advice or recommendations

Jobs For New Graduates
The rest of this article summarizes the answers to 
these questions about jobs for new statistics graduates. 
It is based on the opinions of a few knowledgeable 
people rather than a large survey. The surprising 
agreement among the contributors lends weight to 
their advice.

What Jobs Are Out There?

Very few positions were identified as exclusively for 
new statistics graduates. Instead, new graduates 
qualify for a number of positions for which statistics is 
just one of several appropriate backgrounds. The 
position title most commonly mentioned was (no 
surprise here!) “statistician” modified by an adjective 
describing the field of work. Some of these titles were:
—Statistician
—Biostatistcian
—Agricultural statistician
—Survey statistician
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—Mathematical statistician
—Automated data processing statistician

Other common positions were:
—Staff (in a consulting organization)
—Programmer
—Analyst

What Do These Statisticians Do?

Employers often describe what an employee is 
expected to do by listing “key job elements” that are 
the major responsibilities assigned to the person in the 
position. These are often used by employers to 
describe positions at job fairs, in on-campus recruiting 
notices or newspaper advertisements, or in formal 
personnel records.

Many companies use terms in a special way inside 
their company or industry. To find the best employment 
opportunity, students should understand the specific 
terms as different employers use them. For example, if 
a job posting reads “responsible for programming PC’s,” 
does this mean programming personal computers in an 
office environment or programmable controllers on the 
shop floor? Or does it mean responding to problem 
communications from suppliers or customers? The way 
to find out is to ask someone knowledgeable in the 
industry. Company interviewers, faculty advisors and 
recent graduates in the same industry are good sources 
for this information.

The contributors identified key job elements in 
three categories: 
—Statistical (specific statistics theory or methods)
—Technical (mathematical, engineering or computer-
related activities) and
—Non-statistical (activities outside statistics methods 
or theory). 

The common elements were:

Statistical

—Apply statistical methods (the specific method 
varied with the industry)
—Apply statistical theory
—Collect, analyze, interpret data
—Perform general statistical consulting
—Review and diagram processes
—Prepare sampling frames
—Draw samples

Technical

—Write SAS computer programs
—Use databases
—Conduct web-based searches

Non-statistical

—Write reports
—Make presentations
—Participate in teams

What Do Students Need to Know?
Key job elements describe a position. Qualifications 
describe a candidate or what a candidate needs to 
know. Usually the list of qualifications describes the 
“ideal” candidate. Employers often do not find a 
person who is an exact match, but they attempt to 
select someone who comes as close as possible on the 
most important or required areas.

The formal qualifications mentioned by the con-
tributors were
—Bachelor’s degree with two to four years’ experience
—Major in math, statistics or operations research
—Master’s degree strongly preferred (MS with no 
experience was seen as equivalent to bachelor’s with 
two to four years experience)
—Minor in the field of application (examples: a 
science, social science or engineering)
—Specific statistics course work (more about this in 
the next section)
—Communication skills (written and oral)
—Computer programming skills (SAS was mentioned 
most often)

On these qualifications there was considerable 
agreement among the contributors despite their widely 
different experience. Almost all of them mentioned that 
a statistics degree was only one of several qualifying 
degrees, that an advanced degree was highly desirable, 
and that knowledge of the subject area was very import-
ant. Students can demonstrate subject matter 
knowledge by taking additional courses (more than just 
the introductory course--perhaps even a concentration 
or a minor) in the area or by summer or co-op employ-
ment in the field while still in school. The best solution 
would be to have both course work and related employ-
ment.

This list begs the question about whether a statistics 
bachelor’s degree really is enough to find a first job after 
graduation. The answer is a definite yes based on the 
contributors’ and author’s experience. It also immedi-
ately raises the big question for all people looking for 
their first job: how do I get the experience required for 
the first job until I’ve had my first job? This question is 
not unique to statistics degree holders and the advice 
section at the end of this article offers some answers. 

What Do They REALLY Need to Know?

The formal qualifications listed above are very general 
but were mentioned by almost everyone. The 
contributors also offered more detailed descriptions of 
qualifications, but these tended to be specific to a firm 
or industry.

The detailed qualifications below (in no particular 
order) were mentioned by more than one contributor, 
but not by all. They suggest specific courses, class proj-
ects or work study experiences that students might 
have during college.

 12    STATS 36  ■  WINTER 2003



ASA

Statistical
—Analysis of variance/general linear models
—Simple analysis methods
—Reliability statistics
—Survival statistics
—Variance component analysis
—Variance propagation
—Acceptance sampling
—Exponentially weighted moving average
—Design of experiments
—Nonstandard experimental design
—Graphical analysis (box and whiskers, etc.)
—Statistical process control
—Sampling
—Principles of statistics and variation
—Survey methods and techniques
—Research methods and techniques
—Data collection/handling
—Limitations of methods
—Statistical experience/hands-on work

Technical

—Tolerancing
—Measurement capability analysis
—Calibration
—Statistical package (especially SAS, although S-plus 
and Minitab were also mentioned)
—Database programming/structure/large database 
experience
—Mathematics including advanced calculus, linear 
algebra
—Subject matter knowledge

Non-statistical

—Written communication
—Oral communication
—Work organization
—Consulting (practical experience preferred)
—Meeting participation (agendas, minutes, etc.)
—Team membership/collaboration
—Interpretation of statistics to non-statisticians

That is quite a list! No single student can or will 
graduate knowing about all of the topics. How can stu-
dents know what are the most important items for 
them?

What’s Most Important?

To help answer this question, the contributors were 
asked to rate the qualifications in importance on a 
scale from 1 to 5, with 5 being the most important. 
They consistently gave two qualifications the highest 
importance:
—The statistical methods most often used in their 
field of application.This was a different method in 
different fields.
—Communication skil ls .  Written and oral 
communications were equally important.

Advice

The last question for the contributors was open 
ended. It asked them to give any comments or advice 
they felt would be useful to graduating statistics 
students. Their answers covered a lot of issues both 
statistical and non-statistical and were offered with 
great energy and belief. Their advice can be 
summarized in eight points.

Experience

Get as much experience with applied statistics as is 
possible while still in school.This may be in the form 
of class projects, co-op experiences, work-study, or 
internships. Work in a campus consulting center if at 
all possible.

Employers often use summer hiring to check out 
prospective full-time employees. Students can use sum-
mer employment in a similar manner by looking for 
summer work in a field or at a firm that holds long-
term interest for them. Doing this also helps overcome 
the “experience required” hurdle that faces people seek-
ing their first full-time job.

Field of application

Learn about statistics as used in a specific field. Take a 
minor or introductory course sequence in a field of 
application such as biology or marketing.

Find out what fields the statistics faculty members 
have worked in. Ask them which methods are most 
used in that field. Ask statistics instructors what fields 
use the methods they are teaching. When visitors come 
to campus to give talks, attend the talks and notice 
what methods they use. Ask them what methods are 
used in their fields.

Acquire experience in the specific field. It is most 
useful if the experience involves statistics, but it is also 
useful to acquire any experience in an industry or firm 
that is of long-term interest. For example, it is valuable 
experience to have worked in the tooling or production 
department of a manufacturing plant in a summer or 
co-op job if a student wishes to seek a position as a 
quality statistician after graduation. 

Teams

Get experience working in project teams. Learn to fill 
the different roles in teams (member, leader, facilitator, 
etc.) Take a class in organizational behavior that 
explores team dynamics. Sign up for classes with term 
projects assigned to teams. Learn to become 
comfortable in roles that are not familiar. “Take 
charge” people should practice facilitating rather than 
leading; “followers” should volunteer for leadership 
roles. 

Communication

Develop excellent written and oral communication 
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skills. Take a writing class, then take another! Learn to 
write long, detailed reports and one-page summaries. 
Prepare presentations with bullet points. Become 
comfortable speaking in front of groups. Offer to 
make the presentation for team projects. Learn to 
convey statistical information to non-statisticians.

Learning

Plan to continue to learning. Take personal 
responsibility for continuing to learn after graduation. 
Any technical field such as statistics is continually 
growing. To stay useful, students must plan to grow 
with their field. This can be done after graduation by 
joining professional societies and attending meetings, 
taking classes offered at work by their employers, 
taking evening classes either through distance learning 
or local colleges, reading professional journals. Find 
out whether an employer values specific degrees or 
certification and work towards one. Ask for new 
assignments on the job that require expanded skills.

Programming

Learn to use a statistics application package and a 
high level programming language. The most 
commonly mentioned package was SAS. Each 
employer usually has a statistics package that is used 
at the company. Learn to use this package as quickly 
as possible. Learn to use as much of the capability of 
application packages as possible. Develop a careful, 
error-free approach to programming.

Data

Develop good data collection and management skills, 
including the use of a database management program. 
Work with the largest data sets available. While still in 
school, work on projects that require the design of an 
analysis plan and the collection of the data to support 
it and the construction of the database from the 

collected data. Learn data quality assurance and 
documentation methods. Learn to move data between 
application packages. If possible, take a class in data 
base management to supplement hands-on experience 
constructing and maintaining databases. 

Graphical methods

Learn to think about and explain statistical analyses 
using graphical methods. Learn to use the graphing 
routines of statistics application packages. Learn to 
present an analysis using only graphical methods. 
Learn as many graphical forms as possible, their 
appropriate use and their limitations. Incorporate 
graphical summaries in any analysis prepared for 
class, projects or work-study, even if this is not a 
specific requirement.

This advice is not significantly different from advice 
offered in previous articles. What may be different is the 
increased emphasis on computing and database skills 
and the very heavy emphasis on the need for real-world 
experience and the non-statistical skills of communica-
tion and team participation. Without these skills and 
experiences in their toolkits, new statistics graduates 
will not be competitive for employment, regardless of 
the field in which they seek employment or the statisti-
cal methods they have learned.

Summary
The undergraduate statistics degree has received 
relatively little emphasis at most institutions compared 
to statistics graduate degrees. However, it is a degree 
with great potential and one that offers students much 
flexibility in their career choices. The advice offered in 
this article should make the job-seeking process a 
l i t t le  eas ier  for  s tudents  graduat ing with 
undergraduate degrees in statistics.
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Foreword by Ginger Holmes Rowell

Last August I had the privilege of taking three 
students to attend the Joint Statistical Meetings (JSM) 
in New York City. If you are a student and would like 
to go to the JSM now is a good time to start planning. 
Next summer, the JSM will be held in San Francisco, 
California, August 3-7. The JSM offers several 
important opportunities for students to learn more 
about careers related to statistics. You can attend 
sessions related to your potential career, or you can 
visit the exhibit booths set up by statistical companies 
ranging from the Center for Disease Control to 
insurance companies. If you are actively searching for 
a job, then you might want to participate in the Career 
Placement Service. Prospective employers and 
employees can review job openings and resumes as 
well as set up interviews. My students were all very 
glad for the opportunity to attend the JSM. It was 
important for their education as students interested in 
math and statistics, and for their exposure to a world 
of statistics that previously they did not even know 
existed. Traditionally, few undergraduate and graduate 
students participate in the JSM; however, with so 
many sessions on different statistical topics, ways to 
learn more about statistical careers, and opportunities 
for networking there really is something for every 
student interested in attending the JSM.

Before you go to the JSM meeting, you can study an 
online version of the conference program. This can help 
you sort through the many different types of sessions 
you can attend. A teacher might be able to suggest 
appropriate level sessions to match your interests and 
your background knowledge. There are social opportu-
nities at the conference as well. Each year there is a 

student mixer in the evening. This is a good opportu-
nity to meet other students attending the conference, 
and you might even win a door prize. Another social 
activity is the annual informal dance party. And if you 
want to learn more about the area where the conference 
is located, you can usually take a tour with other JSM 
attendees.

Attending such a conference can be expensive, 
especially if the location is far away and if you want to 
participate in the placement program and tours. The 
JSM tries to make attending the conference more afford-
able for students. For JSM 2003, the reduced-rate 
registration fee is $50 for students and $60 for K-12 
teachers regardless of whether you register early or at 
the conference. Many times, the college or university 
you attend might provide funds for the registration fee 
and/or travel expenses. Check with your appropriate 
academic departments and with your school Student 
Government Association for possible ways to help fund 
student travel to academic conferences. Guidelines will 
differ at different schools, but generally, you may have 
to complete an application for the travel funds and 
write a report of your experience. Be certain to ask in 
advance what receipts you need to retain for reimburse-
ment. Also, there are usually some student 
accommodation rates at the hotels, and the JSM pro-
vides a forum to help you locate another JSM attendee 
to share a hotel room and related expenses with, as an 
additional way to cut costs. 

Students interested in learning more about attend-
ing the conference in San Francisco can log onto http://
www.amstat.org/meetings/jsm/2003.

My students were all very glad for the opportunity 
to attend the JSM. It was important for their education 
as students interested in math and statistics, and for 
their exposure to a world of statistics that previously 
they did not even know existed. Traditionally, few 
undergraduate and graduate students participate in the 
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JSM; however, with so many sessions on different sta-
tistical topics, ways to learn more about statistical 
careers, and opportunities for networking there really is 
something for every student interested in attending the 
JSM.

The vignettes below were written by students 
attending JSM 2002, as they reflected on their experi-
ences:

An Undergraduate Perspective, by Ileah McKee

Ileah is a senior undergraduate math major at Middle 
Tennessee State University. She plans to continue her 
education to earn a Ph.D. in mathematics. She would 
like to teach mathematics on the college level. Ileah is 
minoring in foreign languages and spent much of her 
summer in France. One of Ileah’s many hobbies is 
scuba diving.

A First Year Graduate Student Perspective, by Keeley 
Hutchison

Keeley is a graduate teaching assistant at MTSU where 
she teaches college algebra and helps students with 
questions and homework in the mathematics 
laboratory. In May 2003, she will receive her Masters 
degree in applied mathematics with an emphasis in 
statistics. Following graduation, she plans to teach 
either onat? the high school or collegiate level. Keeley 
is active in her church and community during her 
spare time.

A High School Teacher Perspective, by Leann Hooge

Leann is a mathematics teacher at Hume-Fogg Magnet 
High School in Nashville, Tennessee where she has 
taught for five years. Last year she took a one-year 
leave of absence from public school teaching to finish 
her Master of Science in Teaching, with a 
concentration in secondary mathematics education at 
Middle Tennessee State University. She graduated in 
August and returned to teaching, tutoring and 
coaching an award winning cheerleading squad.

An Experienced Graduate Student Perspective, by 
Venita DePuy

need Venita’s bio sketch

An Undergraduate Perspective

by Ileah McKee

I am a senior undergraduate math major at MTSU and 
plan to continue my education and earn a Ph.D. in 
mathematics so that I can teach mathematics at the 
college level. Attending the New York City JSM was a 
very enlightening experience. My views of the 
professional world of statistics were opened 
dramatically since my prior statistics experience had 

primarily been in the undergraduate classroom at the 
undergraduate level.

We began the conference by registering and receiv-
ing an assortment of materials such as the conference 
program, which lists the events with times and loca-
tions, and a book containing the abstracts of the 
presentations and panel discussions. On the first day, 
Dr. Rowell selected a session for us to attend to give us 
an understanding of how the meeting was to progress. 
Each of us then referred to our programs and abstract 
guides to plan the rest of our schedules to suit our indi-
vidual interests. There were many choices among the 
sessions that were offered. An attendee could not only 
hear lectures on a wide range of interesting topics but 
could also see numerous poster presentations showcas-
ing a variety of statistical applications as well as exhibit 
booths with employment information. 

Many interesting topics caught my eye, but since 
the lectures overlapped, it was sometimes a difficult 
task to decide which session to attend. I could choose 
from approximately 29 different sessions conducted 
simultaneously from 8:30 a.m. until around 6 p.m. 
each day along with opportunities to attend luncheon 
lectures for a fee. There were even special events in the 
evenings. The subjects of the numerous lectures 
included many topics like biomedical warfare and air 
pollution, education and assessment, census taking, 
insurance statistics and economics, and even medicine 
and genetics. I was surprised to see so many different 
areas of expertise where statisticians provided the cor-
nerstone of the work.

The atmosphere of the conference varied depend-
ing on the lecture attended. Some lectures were 
advanced such as Bayesian analysis and Voronoi tessel-
lation. Others focused on the teaching and learning of 
statistics. Since I had been working with Dr. Rowell on 
a project using statistical teaching tools available on the 
web, I made it a point to attend several lectures regard-
ing education, statistics, web-based teaching methods, 
computer-based education, and instructional technol-
ogy, to name a few. 

All of the lectures I attended were interesting. I will 
mention a few that were particularly applicable to my 
interest. The lecture by Andrew Gelman was based on 
his and Deborah Nolan’s book “Bag of Tricks for Teach-
ing Statistics.” He was a very energetic and organized 
speaker. He not only had his presentation projected 
from a computer slide show onto a wide screen, but he 
also distributed printed copies of his slides and excerpts 
from his book. Another interesting presentation I 
attended was given by Alexander Kugeshev. He demon-
strated the use of his website for teaching statistics and 
gave some thoughts on how to enhance the web-based 
statistical concepts with teaching techniques in the 
classroom.

I was glad the conference gave me an opportunity 
to experience such insightful lectures on similar topics 
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from very different perspectives. Overall, I feel that my 
experience at this year’s JSM was a complete success. I 
gained some very helpful hints for my future as a 
teacher; however, should my career plans change, I 
now have seen other interesting statistics-related disci-
plines and can make more informed career and 
educational choices.

A First Year Graduate Student Perspective

by Keeley Hutchison

I am currently a graduate teaching assistant at MTSU 
where I teach college algebra and work in the 
mathematics laboratory. In May 2003, I will receive 
my Master’s degree in applied mathematics with an 
emphasis in statistics. I am planning on teaching 
when I graduate, but I have not yet decided whether I 
want to teach at the secondary or collegiate level. 

This conference opened my eyes to many different 
ways that statistics is used in the “real world.” The ses-
sions that I chose to attend broadened my 
understanding of what to do with statistics. One of my 
favorite sessions was “Data Visualization in the Media: 
Infographics at The New York Times.” This session, 
which lasted for an hour and a half, emphasized incor-
porating statistics with the design and graphics of The 
New York Times. Most statisticians at The New York Times 
are involved in producing and editing the editorial page 
whereas only a few statisticians are involved in the 
graphic design department. Pressed for time, the 
graphic designers are presented with a wide variety of 
data, and they have to decide how to present it in an 
appealing and eye-catching way that still communicates 
the information clearly. It was very interesting to learn 
all that is involved in displaying statistical graphics in 
The New York Times.

Another session I attended was “The Use of Web-
Based Methods to Broaden the Reach of Statistics.” This 
session was very applicable to my interest in teaching 
math and statistics. One of the speakers spoke on the 
use of Java applets for Internet-based statistical com-
puting. Java applets are small computer programs that 
can add a dynamic component to instruction on intro-
ductory statistical concepts that otherwise might be 
hard to teach. This session was enjoyable because I was 
exposed to ideas for teaching statistics in the classroom 
using the Internet. Another speaker presented ways to 
use the Internet to maintain constant communication 
with students in the class. Ideas presented encouraged 
faculty members to use the Internet to post grades, to 
use anonymous e-mail for student comments, and to 
use software tutorials. This session was very beneficial 
to me and my future plans for teaching.

Another aspect of the JSM was the Exhibits. This 
part of the conference was a little overwhelming at first. 
The many booths representing different companies 

were not particularly geared toward students. However, 
with close inspection one could find beneficial informa-
tion about different careers that use statistics. 

Attending the Joint Statistical Meeting is definitely 
a great learning experience. Even though this was the 
first meeting I attended, I plan to return to the JSM next 
year. 

A High School Teacher Perspective

by Leann Hooge

I am currently a mathematics teacher at Hume-Fogg 
Magnet High School in Nashville, Tennessee. Taking a 
one-year leave of absence from teaching, I was able to 
attend MTSU full-time and graduated in August with 
my Master of Science in Teaching degree, with a 
concentration in secondary mathematics education. I 
have taught five years in secondary public education 
and taught college algebra and mathematics for 
elementary educators as a graduate teaching assistant 
at MTSU for one year.

As an educator, I viewed attending this conference 
as a professional development activity, and I hoped the 
topics discussed and information I learned would be 
applicable to my teaching. I was not disappointed. The 
JSM had a wide variety of options for educators at both 
the high school and collegiate levels. Even though the 
majority of the sessions were not focused on education, 
a selective number of workshops did focus upon this 
topic. Education related mini-seminars included using 
technological resources in the classroom, the changing 
teaching principles, new trends and current issues in 
education at all levels of instruction, and the future of 
statistics education.

I was quite impressed by the plethora of diverse 
workshops and the fast-paced world of presentations. 
Conference presentations varied in length and format. 
In many of the sessions I attended, as many as five pre-
senters individually demonstrated their knowledge on 
a specific topic, each taking a slightly different angle on 
the same subject. Each person received a short amount 
of time (about 12 minutes) to develop their topic but 
was allowed to elaborate later during the open discus-
sion time at the end of the session. This manner of 
presentation seemed to restrict some presenters but at 
the same time allowed a number of people to present 
their current research. This format was beneficial to me 
because I was able to hear several topics with which I 
was not previously familiar. From the sessions, one 
could learn about the predictions of Wall Street, how to 
use statistics to detect diseases such as the West Nile 
Virus, the statistical significance within sports, and 
various other topics appealing to students.

If these options were not enough for an educator, 
there were numerous other topics to be discovered. I 
was astonished by the vast number of topics with which 
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I was not familiar. However, with the open door policy, 
I was free to find the sessions that best suited my edu-
cational needs and found the New York City JSM 
conference to be a delight!

An Experienced Graduate Student Perspective

by Venita DePuy

The story of my trip to the 2002 Joint Statistical 
Meetings actually begins a few days before. Like the 
rest of my class at North Carolina State University, I 
had studied all summer for the Master’s Exam, which 
was Thursday, August 8. So when I boarded my flight 
for New York City at noon on Friday, my mind had 
been everywhere but on the conference. While the 
majority of my classmates were sweating their way 
through the Ph.D. qualifier on Friday, I was packing 
and trying to figure out how to make the most out of 
my first visit to the JSM. Since I plan to graduate in 
May, I was especially looking forward to networking 
and meeting with various companies to lay the 
groundwork for next spring.

A few months earlier, I had answered an advertise-
ment in the Amstat News for student volunteers to help 
with the Continuing Education classes before and 
during the JSM. In return, volunteers could attend a 
class of equal length for free. My sister and brother-in-
law live near Times Square, so the expense of an extra 
night’s stay was not an issue for me. After looking 
through the variety of classes offered, I decided to take 
the Applied Spatial Statistics class on Sunday and to 
volunteer to help with a class the day before. I chose 
those two days because I wanted to leave myself free to 
see as much as possible of the conference, which didn’t 
really get into full swing until Monday. 

I began my first morning by waking up at 6:45 on 
Saturday, questioning the wisdom of volunteering to 
help with the Continuing Education classes at that early 
hour. The morning started with a quick orientation; 
then we moved downstairs to begin checking people in. 
The hour until the class started was a frantic rush of 
signing in participants, distributing handouts and text-
books, and answering questions. Once the class began, 
things calmed down to the extent that I wished I had 
brought something to read, to take my mind off debat-
ing why the hotel air conditioning was set to ‘Antarctica.’ 
My co-monitor and I alternated sitting in on the regres-
sion methods class and, in the meantime, we or I? got 
to know the other class monitors.

Through these conversations I learned about the 
Survey Methodology curriculum in Maryland and 
undergraduate research opportunities in Boston. 
During breaks, I also had the opportunity to learn what 
statisticians do at the National Cancer Institute and that 
my department at NC State hasn’t really changed too 
much in recent years, based on the reminiscences of a 
graduate from the late 90s. 

I also learned that name recognition can play a big 
part in getting to know statisticians. I can’t remember 
how many people said, “Oh, you go to NC State? Do 
you know such-and-such person?” In spite of the stren-
uous curriculum in my program, I learned that it’s 
worth it to go to such an excellent school. I can tell a 
statistician who I’ve never met before that I’ve taken 
Tsiatis’ clinical trials class (at NC State), and he will 
recognize the name and continue to tell me in greater 
detail about his own work, while relating it to a recent 
paper published by Dr. Tsiatis. 

My first day in the Big Apple was made even more 
complete when, while walking the few blocks from the 
hotels to my sister’s apartment, I discovered a street fair 
taking up ten blocks of Times Square. Looking down 
ten blocks of solid people was a little intimidating, but 
the shopping was a blast – everything from $1 Thai 
food (very good chicken satay) to jewelry to pottery. 
After spending an hour or two there, I was more than 
happy to wrap up the day with a manicure and pedi-
cure.

Sunday started off early with my spatial statistics 
class at 8:15. It was a very informative class, and the 
number one thing I learned was how little I know! The 
teacher was quite good and combined his PowerPoint 
presentation with demonstrations of SAS, SPSS, and 
GIS. During lunch, I was lucky enough to have the 
chance to ask the instructor and another student about 
environmental and wildlife statistics. They encouraged 
me to become active in the Wildlife Society if I wanted 
to pursue a career in wildlife statistics, and they pro-
vided some insight into the availability of jobs.

During the afternoon break in the class, I struck up 
a conversation with an industrial statistician who works 
for a large food company, and I learned a little about 
what she does. She also told me about how she had 
gone through a recruiting firm when obtaining her job 
and how happy she was with them. She talked about 
how they had filled her in on the background of the 
company and the people she would meet, got her the 
schedule for the interview, and told her answers to 
many questions that she might not have thought to ask. 
I also (during my morning break) spoke with a gentle-
man about the National Institute of Standards and 
Technology, where he was employed, and also learned 
a little about the insurance industry, where he had 
worked previously.

After the class was over, I went to the Career Place-
ment Service, which I had registered for online. I was 
given another name tag, and I sat down to look through 
books of employers’ job openings. There was a com-
puter system that allowed employers and potential 
employees to contact each other easily – just typing 
someone’s ID number in a special field caused their 
name to pop up. Although there were not enough com-
puters during busy times, it was a very useful system.

I found my way to the informal reception spon-
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sored by the Caucus for Women in Statistics and 
learned a little more about that organization over hors 
d’oeuvres. The party was open to everyone, and I’m 
sure the few men that were there enjoyed themselves! 
The speakers shared good tips about getting involved 
and making the most of the meetings, and they were 
very welcoming. After the reception, I went to the 
opening mixer. It was rather large and intimidating 
until I found a faculty member from my department 
and then some students that I knew. It was a little 
daunting seeing so many statisticians in one room!

I was a little anxious anticipating the New York City 
crowds at 8am Monday morning, but they turned out 
to be minimal. I started out the day listening to a talk 
by a Ph.D. student from NC State. I followed that up 
with breakfast with a researcher who works for the 
federal government in DC, and I learned about using 
reverse propensity scores to account for biases in clini-
cal trials. I filled the rest of my morning with interviews 
with various organizations and then had lunch with a 
street corner vendor. I squeezed in a few minutes 
during the lunch hour to look at the posters on display. 
I enjoyed seeing the exhibitors’ booths after lunch, 
where I got free samples of software, looked at publish-
ers’ discounts to find the course textbooks I’d need for 
fall semester, nibbled on free candy, and picked up 
enough pens to last me through my second year of grad 
school. The best freebies (in my opinion) were the 
squeezable pill – like a stress relief ball – from Eli Lilly 
and the retractable phone cords from Pfizer. 

On Monday evening, I didn’t have time for all the 
receptions I wanted to attend. I was unable to make it 
to the reception for the Caucus for Women in Statistics 
and the student mixer because I attended two of the 
pharmaceutical companies’ receptions. The food was 
good, and I enjoyed making contacts. Students who 

had graduated from my department were kind enough 
to introduce me to people at both companies. I learned 
about some of the differences between clinical trials and 
pre-clinical studies; the latter seemed to be less regu-
lated, as they deal with cells or animals, and to involve 
more statistical analyses and less red tape. All in all, it 
was an exhausting day.

Tuesday was a slight bit calmer. I started out the day 
by checking in at the Placement Service, happy to find 
a few more messages requesting or confirming inter-
views. I checked the binders of available jobs and 
employers, and I was pleased to see that they were still 
putting more in the binder every evening. After listen-
ing to a few speakers, I went by the exhibit booths for 
a late “breakfast” of free chocolate before my 11am 
interview, where I learned that insurance companies 
also hire programmers and biostatistical analysts in 
addition to actuaries. I had an incredible lunch at the 
Hallo Berlin pushcart, followed by another interview 
before I listened to more speakers in the afternoon. 
Another interview kept me busy until the NC State 
reception, after which several of us took the subway to 
Little Italy for an excellent dinner.

By the time Wednesday morning rolled around, I 
was getting worn out! Things were beginning to slow 
down a little. I’d settled into my routine of scheduling 
the speakers I most wanted to see, around which I 
checked with the Placement Service, met with people, 
and tried to absorb everything I could. I finally man-
aged to fit in a little shopping before an evening 
meeting. By the time I flew home on Thursday, I was 
exhausted.

Since the JSM, I’ve made a point to follow up on job 
opportunities and personal contacts. One of those has 
led to a data set I’m analyzing for a class project. All in 
all, attending the JSM was a wonderful experience that 
I would highly recommend to any student.
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I’m pleased to announce the reincarnation of a 
popular event at the Joint Statistical Meetings (JSM). 
The ASA Stat Bowl (formerly known as “College 
Bowl”) will make its return in San Francisco in 2003. 
Preparations are being made for the event with some 
exciting new aspects. 

The biggest change? MONEY! ASA will be reim-
bursing students who compete in the Bowl to the tune 
of $500 for travel and registration. So if finances were 
keeping you at home at JSM time, here’s your chance to 
help fund your way to the meetings.

Another big change is the elimination of teams. The 
College Bowls of the past were like most academic team 
competitions. (Recent results appear in Table 1.) Eight 
teams of four students represented university statistics 
programs in a single-elimination tournament. For the 
new version of the competition, individual players will 
compete and represent their university. So you no lon-
ger have to round up three teammates to compete in 
the Bowl. Multiple players from a single university can 
compete, and though individuals will be playing, team 
points will be awarded based upon individual perfor-
mance. Think of the collegiate golf championship, 
where individual performances determine team stand-

ings. Individual awards as well as a team award will be 
presented at the conclusion of the event. 

Students will be accepted into the tournament on a 
first come, first in basis. Notification of a willingness to 
participate will serve as entry. Inquires about the Bowl 
or requests to be registered as a contestant can be made 
to Mark Payton, Oklahoma State University, mpayton@
okstate.edu. A maximum of sixteen players will be 
allowed in the contest. In the event that the field of 
contestants fills to capacity, each university will be 
restricted to two players to assure diversity. A waiting 
list will be established to fill unexpected vacancies 
should they occur at game time. 

The contest will be held on the Tuesday of JSM in 
two sessions. Session 1 will consist of four games, each 
with four contestants. The winners of these four games 
plus two at large contestants will advance to Session 2. 
Players who score the most points in Session 1 without 
winning their game will be the at large winners. Session 
2 will consist of the six players who have advanced, 
playing two games each with three players, and the two 
winners meeting head-to-head in a championship 
game. The question format for the ASA Stat Bowl has 
not been finalized as of yet, but the questions will focus 
on the ASA and on statistical history and methodology. 
(Sample questions appear in Table 2.)

Any student interested in playing should contact us 
ASAP before the player positions are filled. We encour-
age all players to register before July 1, 2003, but 
players will be allowed up to game time provided space 
is available. Hope to see you in San Francisco!
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Table 2: Sample Questions (with Answers Below)

1. If 5 cards are drawn at random from a standard deck of 52, what is the probability that the last card drawn is a 
diamond?
2. Which Sesame Street character is undoubtedly a closet statistician?
3. What major statistician made Rothamstead famous?
4. When the sampling distribution of the estimator is insensitive to changes in the distribution of the population, 
we say the estimator is...what?
5. What is the value of the third moment of a standard normal distribution?
6. Give the name of the international society devoted to the mathematical and statistical aspects of biology.

(Answers: 1. 1/4 2. The Count 3. R.A. Fisher 4. Robust 5. 0 6. Biometric Society)

Table 1: A Brief History of Past Statistics Academic Bowls

Year Event Location Champion Runner Up
1992 ASA Winter Conf. Louisville, KY Bowling Green Virginia Tech
1994 ASA Winter Conf. Atlanta, GA Iowa State Florida
1995 ASA Winter Conf. Raleigh, NC Nebraska Bowling Green
1996 JSM Chicago, IL Iowa State Chicago
1997 JSM Anaheim, CA Iowa UC-Santa Barbara
1998 JSM Dallas, TX Iowa Texas A&M
1999 JSM Baltimore, MD Florida Maryland

Solutions to Data Sleuth Mystery

Question #1: From the boxplots it appears that the smokers have, in general, higher FEV scores. The median FEV for the 
smokers is over 3 liters while the median FEV for the nonsmokers is less than 2.5 liters. 

Question #2: In any observational study in which we are looking to assess the relationship between a self-selected category 
(smoking), and some other measure (FEV), we should always be aware of other confounding reasons that might help clarify and/
or explain the apparent relationship. In this case, since these data include so many very young children who do not smoke and 
whose lung capacity are unlikely to be as large as the older children, we should consider accounting for the age of each subject. 
In the actual dataset from Rosner, the subjects’ height and gender are also included and make for an even more complete and 
interesting story.

Question #3: For 16-year-old nonsmokers the estimated average FEV is just under four liters, say 3.8 liters, while smokers 
have an average FEV of just over three liters, say 3.2 liters. Similarly, for 19-year-old nonsmokers the estimated average FEV is 
over four liters, say 4.5 liters, while smokers have an estimated average FEV of about 3.5 liters. Finally, for 10-year-old non-
smokers the estimated average FEV is under three liters, say 2.8  liters, while smokers have an estimated average FEV of about  
2.5 liters. Though the standard errors of these estimates have yet to be expressed, these data do indicate that the older subjects 
who do not smoke have, on average, larger FEV than the smokers. The inconsistency arises when considering the youngest smok-
ers since the estimates suggest that for 10-year-olds smoking is associated with larger FEV. This has a variety of possible 
explanations, some of which include the very small number of young smokers, the short time and relatively small amount that 
these children are likely to have smoked and errors in self-reporting.
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Background

In Tallahassee, Florida, the Environmental Working 
Group and the Healthy Building Network recently 
demanded that the Florida government immediately 
ban the use of lumber that is pressure-treated with a 
preservative called chromated copper arsenate. On 
May 23, 2001, these two groups, in conjunction with 
many other environmental groups, released a study 
that enumerated the risks posed to children due to 
exposure to lumber that is treated with preservatives 
containing arsenic (“Coalition: Ban treated wood,” 
2001). Chromated copper arsenate, or CCA, is 
commonly used to treat lumber to prevent decay due 
to insects and fungi. The uses of CCA-treated lumber 
are many; it’s used for everything from bridges to 
playgrounds to picnic tables.

The preservative CCA is a mixture of chromium 
trioxide (CrO3 ), copper oxide (CuO), and arsenic pent-
oxide (As2O 5). The arsenic is a pesticide, the copper is 
a fungicide, and the chromium fixes the arsenic and the 
copper to the wood. 

Lumber is treated with CCA according to its use. 
The more a piece of wood is exposed to the ground and 
to the elements, the more preservative is impregnated 
into the wood. For example, lumber that has no contact 
with the ground contains 0.25 pounds of preservative 
per cubic foot, lumber that contains 0.40 pounds of 
preservative per cubic foot is used to build playgrounds 

and picnic tables, and lumber that is immersed in salt 
water contains 2.50 pounds of preservative per cubic 
foot (Florida Hazardous Waste and Waste Management 
Department, 2000).

D.E. Stilwell and K.D. Gorny of the Connecticut 
Agricultural Experiment Station determined that the 
arsenic in CCA-treated wood leaches out of the lumber 
into the surrounding environment (1997). They col-
lected 85 soil samples from below seven decks, aged 
four months to 15 years. Concentrations of arsenic in 
the soil ranged from 3 mg/kg to 350 mg/kg. The mean 
arsenic concentration was 76 mg/kg. 

The chemical profile of arsenic from the U.S. Envi-
ronmental Protection Agency indicates that chronic 
exposure to small amounts of arsenic may cause 
decreased blood cell production and nerve damage. 
There is sufficient evidence that inorganic arsenic com-
pounds are skin and lung carcinogens in humans 
(USEPA, 1987). Direct skin contact with inorganic 
arsenic compounds can cause swelling, redness, and 
irritation (USDHHS Toxicological Profile for Arsenic, 
2000).

Minimal Risk Levels (MRLs) are developed by the 
Agency for Toxic Substances and Disease Registry 
(ATSDR) to establish “an estimate of the daily human 
exposure to a hazardous substance that is likely to be 
without appreciable risk of adverse noncancer health 
effects over a specified duration of exposure” (ATSDR, 
Minimal Risk Levels, 2001). MRLs exist for acute (1–14 
days), intermediate (>14–365 days), and chronic (>365 
days) exposure through inhalation and oral exposure 
routes. As of December 2001, a MRL for the dermal 
route of exposure had not been identified because the 
ATSDR was unable to find a suitable method for deriv-
ing a dermal MRL. The MRL for acute oral exposure to 
arsenic is 0.005 mg/kg/day, and the MRL for chronic 
oral exposure to arsenic is 0.0003 mg/kg/day. 

MRLs are especially applicable to sensitive individ-
uals, such as children (ATSDR, Minimal Risk Levels, 
2001). Children are at a greater risk for arsenic poison-
ing than adults because they are more likely to ingest 
soils that contain arsenic. Information also suggests that 
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children are less efficient than adults at internally con-
verting inorganic arsenic into less harmful organic 
arsenic (Toxicological Profile for Arsenic, 2000). 

The purpose of this research was to determine the 
effect of exposure time and concentration of arsenic on 
the amount of the preservative absorbed into skin. It is 
possible that children who are playing on playground 
structures and picnic tables constructed with CCA-
treated lumber are absorbing arsenic into their skin. 
Children exposed to CCA-treated wood for long peri-
ods of time could absorb enough arsenic through their 
skin to be potentially hazardous to their health. Chicken 
skin was used to simulate human skin because the 
structural arrangements of its epidermis, dermis, and 
collagen fibers are similar to that of a young human 
child (Dr. Glenda George, personal communication, 
September 3, 2001). I hypothesized that the higher the 
concentration of arsenic and the longer the time of 
exposure, the greater the amount of arsenic that would 
be absorbed by the chicken skin.

Method
I obtained fresh chicken skins from Amick Farms in 
Batesburg, South Carolina, and I cut the skins into 66 
squares approximately 2 cm by 2 cm. Next, I obtained 
sheets of glass and ten petri dishes and rinsed them 
with distilled water and 10% nitric acid. I purchased 
the pieces of lumber with preservative concentrations 
of .25, .40, and 2.50 pounds per cubic foot, and I 
sawed them into pieces approximately 2.5 cm by 3.5 
cm. Finally, I collected bricks and broke them so that 
each piece weighed approximately 3.0 pounds, or 
1.35 kg. This weight was chosen to simulate the 
weight of a small child sitting on a playground 
structure or picnic table: 3 pounds of brick pressing 
on a 2.5 cm x 3.5 cm wood surface with chicken skin 
underneath the wood is proportional to a 40 pound 
child with 18 in2 of bare skin exposed to the wood.

Each trial consisted of an exposure duration (2, 8, 
or 12 hours) and a preservative concentration (.25, .40, 
or 2.50 pounds per cubic foot). Seven repetitions were 
conducted for each of the 9 (3 x 3) treatments. For each 
time duration, I used 22 squares of chicken skin. I 
placed one square (the control) into a petri dish, and I 
put the other twenty-one squares on top of the glass. I 
put seven of the pieces of the 0.25 treated wood, the 

0.40 treated wood, and the 2.50 treated wood on top of 
the twenty-one squares of chicken skin. I placed the 
bricks on top of each piece of wood (see Figure 1). 

I designed this setup to simulate a small child, aged 
2–6, sitting on a picnic bench. The chicken skin simu-
lated the child’s skin, and the squares of wood simulated 
the picnic bench. The brick added weight that is equal 
to that of a small child, as distributed evenly over a 
surface area of 18 in2, which is the approximate area of 
a small child’s thighs. The glass upon which the chicken 
skins were placed was a smooth, clean, unreactive sur-
face.

I removed the bricks, chicken skins, and wood after 
the indicated amount of time elapsed. I then placed the 
chicken skins into three separate petri dishes according 
to the concentration to which they were exposed and 
labeled the dishes. 

I acid-digested the chicken skin samples with a 
medium that was 25% nitric acid, 25% sulfuric acid, 
and 50% distilled water. I further digested the samples 
with 30% hydrogen peroxide. The digested samples 
were then analyzed for arsenic with a Perkin-Elmer 
Atomic Absorption Spectrophotometer.

Results
The experimental data partially supported my 
hypothesis. While the amount of arsenic absorbed by 
the chicken skin did increase as time of exposure 
increased, increases in preservative concentration did 
not significantly increase arsenic absorption. The 
scatterplots in Figures 2, 3, and 4 display the arsenic 
absorption amounts vs. duration times for .25 wood 
(Figure 2), .40 wood (Figure 3), and 2.50 wood 
(Figure 4). The mean arsenic absorption values for the 
exposure times and the amounts of preservative are 
illustrated in Table 2; the standard deviations are 
reported in parentheses.

I used two-way analysis of variance (ANOVA), con-
ducted with the Minitab software package, to analyze 
the data. The results appear in Table 3. The null hypoth-
esis that the chicken skin would not absorb more arsenic 
over increased periods of time was rejected. The F-sta-
tistic was 23.74, and the p-value was less than .001. The 
effect of the level of preservative concentration was not 
significant (F = 2.17, p = .124), and the effect of an 
interaction term was also not significant (F = 0.84, p = 

Figure 1: Diagram of Experimental Setup
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.505).
Figure 5 displays an interaction plot. All of the lines 

are approximately parallel and the differences between 
the levels of the dependent variable, amount of arsenic 
absorbed, are roughly the same distance for each value 
of the significant independent variable, time of expo-
sure. In the graph we see that time of exposure had a 
significant impact on the amount of arsenic absorbed.

Because time of exposure was statistically signifi-
cant, I used a Pearson Product Moment Correlation 
Coefficient (r) to determine the strength of the relation-
ship between the time of exposure and the amount of 
arsenic absorbed by the chicken. The correlation for the 
0.25 treated wood was r = 0.643, with a two-sided 
p-value of 0.002. For the 0.40 treated wood, r = 0.740 
with p < 0.001. For the 2.50 treated wood, r = 0.659 
with p = 0.001.

Extension
D.E. Stilwell (1998) used a wipe test with a polyester 
cloth to determine the amount of arsenic picked up 
by the cloth after exposure to Type C 0.40 treated 
wood, the same type of wood used in this experiment. 
He placed a polyester cloth under a cement block, and 
pulled this structure across the surface of the CCA-
treated wood five times. The amount of arsenic 
dislodged onto the polyester cloth is shown below. I 
extrapolated his values, as shown on the right, since 
my values are given in ug As/cm2, and his values are 
given in ug/100 cm2.

These results are fairly consistent with my mean 
values of 0.19, 0.74, and 1.53 micrograms As/cm2 for 
each of the exposure levels for the 0.40 treated wood.

Table 5 shows the values after they were converted 
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Figure 2: Scatterplot of Absorption vs. Duration for 
0.25 Wood

Figure 3: Scatterplot of Absorption vs. Duration for 
0.40 Wood

Figure 4: Scatterplot of Absorption vs. Duration for 
2.50 Wood

Table 2: Mean (and standard deviation) of the 
amount of arsenic absorbed by skin (ug/cm2)

Time of   Preservative Concentration (ni = 
7)
Exposure 0.25 0.40 2.50
2 hours 0.27 (.20) 0.19 (.15) 0.81 (.09)
8 hours 1.2 (.59) 0.74 (.37) 1.53 (.93)
12 hours 2.04 (1.48) 1.53 (.80) 1.84 (.64)

Table 3: Two-Way ANOVA Summary

Source DF SS MD F p
Exposure 2 20.370 10.185 23.74 < 
0.001
   time
Preservative 2 1.864 0.932 2.17 0.124
   Conc
Interaction 4 1.444 0.361 0 . 8 4  
0.505
Error 54 23.171 0.429  
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from ug As/cm2 into mg As/kg of the child’s body 
weight. This allowed me to compare my results to the 
Minimal Risk Levels for both acute and chromic oral 
exposure to arsenic.

With the exception of two, all of the values shown 
are greater than or equal to the minimal risk level for 
acute oral exposure to arsenic (0.005 mg/kg/day). All of 
the values are greater the minimal risk level for chronic 
oral exposure to arsenic (0.0003 mg/kg/day). This indi-
cates that the skin absorbed arsenic in quantities that 
exceeded the threshold at which the effects of arsenic 
exposure begin to occur in sensitive individuals.

Discussion
The purpose of this research was to determine the 
effect of time of exposure and concentration of the 
CCA preservative on the amount of arsenic absorbed 
into chicken skin. I found that as time of exposure 
increased, the amount of arsenic absorbed by the skin 
increased. For the 0.25 wood, for example, the mean 
amount of arsenic absorbed by the skin increased 
from 0.27 micrograms As/cm2 (2 hours), to 1.2 
micrograms As/cm2 (8 hours), to 2.04 micrograms As/
cm2 (12 hours). The data supported the above 
hypothesis. 

The data did not support the hypothesis that the 
greater the amount of preservative, the greater the arse-
nic absorption, but this could be due to the small 
sample sizes (7) failing to detect an effect that may 
actually be present. Also, several uncontrollable vari-
ables could account for this. Since I purchased the 
wood from two different states, the treatment process 
could have been different. (I could not buy the 2.50 
and 0.40 wood in my hometown of Columbia, SC, so I 
bought them from a treatment facility in Florida.) Also, 
some of the wood could have been older than other 
pieces, or could have been exposed to more weather-
ing.
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Science Fair Excitement
When my pre-Research teacher, Dr. Glenda George, 
told me and the rest of my classmates in the Discovery 
Math and Science Magnet Program that we would 
need to finalize our research project ideas before the 
end of the summer, I was nervous but excited at the 
thought of such a challenge. So, in the summer 
between my freshman and sophomore year of high 
school, I spoke with Dr. George and found a topic that 
both worried me and intrigued me: arsenic-treated 
wood was being used to build playgrounds.

Over the next six months, I wrote my paper, 
developed my experimental design, and carried out 
the experimentation and analysis. At this point, I 
came to what my Research teacher, Mrs. Marilyn 
Senneway, called the “meat” of the entire research 
paper: the statistics. After several attempts at finding a 
way to input the data so as to yield results that would 
appropriately reflect the data, I finally found a way, 
and, in doing so, learned the “significance” of statistics 
in research. Mrs. Senneway had continually told us 
that, without statistics, we would have no way of 
knowing what our results really were. After looking at 
the Two-Way ANOVA table, the Interaction Graph, 
and the Pearson Product Moment Correlation Table, I 
knew she was absolutely right. My resulting graph 
and tables told me more about what had actually 
happened between the variables than I had ever 
thought possible.

In April, I competed at our local science fair and 
won the top award, and with it, the chance to 
compete at the Intel International Science and 
Engineering Fair in Louisville, Kentucky in mid-May 
2002. To say that the Intel ISEF was the highlight of 
my sophomore year would be a gross understatement 
– it was the experience of a lifetime. Over 2000 
students and teachers from 39 nations attended, as 
well as Nobel Prize recipients who spoke with 
students and answered questions from the audience.

The first of three award ceremonies was the day 
after the judging, and it was at this award ceremony 
that the American Statistical Association presented the 
award for the Best Use of Statistics. When the 
announcement was made, my initial reactions were 
shock and overwhelming excitement. The director of 
my magnet program, Mrs. Jennifer Richter, 
immediately used her cell phone to call Spring Valley 
High School and my principal, Dr. Greg Owings. As I 
shook Chapter President Bill Wunderlin’s hand, I was 
trembling with excitement. All the hours of work and, 
at times, frustration, were worth it. I knew I was 
hooked on science, math, and exploring areas of the 
environment where I felt I could have an impact. I felt 
I had found a career path that was challenging, 
exciting, and very worthwhile.

Figure 5: Interaction Plot.
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Discrepancies in findings also could have resulted 
from the uneven surface of the chicken skin and the fat 
content in the chicken skin. It is possible that an 
increased fat content could affect absorption (Gensie 
Waldrop, personal communication, November 3, 
2001).

In the future, I could dip the skins in water to 
remove surface arsenic before they are digested. Also, I 
could analyze sand samples from local playgrounds for 
arsenic content. 
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Table 4: Results of Stilwellʼs Wipe Test

 Amount of Amount of 
 As Dislodged in As Dislodged after
Set  Stilwellʼs Wipe Test  being multiplied 
Number (ug/100 cm2) by 0.01 (ug/cm2)
1 15–31 0.15–0.31
2 6–33 0.06–0.33
3 56–122 0.56–1.22
4 15–26 0.15–0.26

Table 5: Comparison to ATSDR Minimal Risk Levels
(mg As/kg of the average childʼs body weight)

Time of  Preservative Concentration 
Exposure 0.25 0.40 2.50
2 hours 0.002 0.001 0.005
8 hours 0.008 0.005 0.010
12 hours 0.013 0.010 0.012
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Getting Involved With Science Fairs

by Joe Ward

Science Fairs and other science competitions are held across the United States each year with the goals of encouraging 
students to share ideas, motivating innovation, and showcasing cutting-edge science projects. These are very important 
goals not only for individual students but also for the future scientific progress of our nation. Students compete for awards 
and scholarships in these competitions, and the statistical analysis incorporated in their projects can play an important role 
in the final quality of their work. Judges at these contests frequently include statisticians. 

For several years I have attended the International Science & Engineering Fair (ISEF). I always visit the ASA Special 
Awards winners to congratulate them. Katherine Van Schaik won not only the ASA First Special Award of $500 and a plaque, 
but also a U.S. Air Force First Award of $3,000, and an Environmental Protection Agency Second Award of $1,500. 

I also give a presentation titled “Combining the Power of Statistics and Computers to Enhance Science Fair Projects” to 
Fair Directors, Teachers, Parents and ISEF Finalists. I present some ideas about applying computer-based statistical analysis 
techniques to improve research projects.

Also, of most interest is a discussion of ways to obtain statistical support for student research. I encourage participants 
to go to www.amstat.org to identify ASA Chapters and Chapter officers to locate statisticians in their area who might assist 
with statistical design and data analysis techniques. Some students have not only contacted nearby assistance but have also 
received valuable long-distance guidance by phone and email.

I also believe that statisticians can do more to help high school science fair participants. I suggest that statisticians con-
sider:

• assisting high school students with statistical design and data analysis techniques that will enhance the quality of their 
research projects;

• providing special statistics awards and judges to select the award winners at local science-related fairs;

• offering students information about the association between winning statistics special awards and winning specific 
science-category awards;

• encouraging special statistics award-winners to enter the ASA Poster & Project Competitions (see www.amstat.org/
education/index.html#K12) and to submit their research papers for publication consideration in journals and 
magazines such as STATS. 

These activities can contribute much toward “selling” science fair students on the value of using quality statistics in their 
research projects. 

To learn about science-related competitions, consult sources such as Science Service at www.sciserv.org (to locate the 
Science Fairs in nearby locations), an internet search of Junior Academy of Science (to locate Junior Academy competitions) 
and the Junior Science and Humanities Symposium at www.ijas.org/. Since many school districts have web pages, it is easy 
to locate nearby schools and teachers who are already engaged in science and engineering research projects.
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Because I am Greek, and work in the field of 
measurement and statistics in the United States, many 
people approach me to ask questions about the Greek 
alphabet, which are usually followed by the comment, 
‘It’s all Greek to me!” More specifically, students, 
professors and other colleagues have questions about 
how to properly pronounce the names of, and sounds 
of letters in the Greek alphabet. In the past, when they 
used to ask me these questions, I would not be sure 
how to answer. I was not sure if I should tell them 
how to pronounce the letters in the proper, Greek 
way, or in the Americanized version of the Greek 
alphabet. However, as time passed by, I found myself 
using the American pronunciation of the Greek 
alphabet more often than the proper Greek way in the 
USA. It was just a lot easier to say that the letter ‘µ’ is 
called ‘miu’, instead of ‘mee’, which is the way it is 
pronounced in Greek. It was also a lot easier to call χ2 
chi-square, and not ‘hee-square.’ However, since 
people are still asking me about how to pronounce the 
Greek letters, I decided to create a table that would 
answer all of those questions. This table includes 
information on how the names of the Greek letters are 
actually pronounced in Greek and what sounds they 
actually represent. This table also provides the 
corresponding adapted International Phonetic 
Alphabet (IPA) sounds for each letter.

The letters are presented in Table 1, in the order 
they appear in the Greek alphabet. The first column 
presents the upper-case Greek letters, and the second 
column presents the lower-case Greek letters. The third 
column presents the Roman letters that most closely 
approximate each Greek letter. The Greek alphabet 
contains some letters for sounds that are not repre-
sented by single letters in the Roman alphabet, such as 
the letters δ, θ, ξ, and ψ. In addition, in some cases, the 
Greek alphabet has more than one letter that represents 
the same sound. For example, the letters ι, υ, and η all 
correspond to the sound ‘ee’. In addition, the letters ο 
and ω both represent a sharp version of the sound ‘o.’ 

A note should be made that the fourth and fifth 
columns that will be discussed next, represent the let-
ters in a way that would allow people with an American 
accent to pronounce the letters and their names in the 
appropriate manner. More specifically, the fourth col-
umn includes English words that contain the sound of 
the letter that is represented in that row. The sound 
each letter represents is bolded in that word. For exam-
ple, the Greek letter θ sounds like the ‘th’ sound in the 
word ‘think’, while the Greek letter δ sounds like the 
‘th’ sound in the word “then”. American readers should 
also note that when the letter ‘t’ or ‘τ’ is used in Greek, 
or in Table 1, it represents a soft version of the sound 
‘t’, which is a sound between the English sounds of ‘t’ 
and ‘d’. Consequently, the letter ‘τ’ was used in this 
paper as part of the IPA, to represent this softer sound. 
This was the only adaptation that was made to the IPA 
for this paper. The fifth column presents how the name 
of each letter should be pronounced. For example, the 
letter ϕ is called ‘fee’ in Greek and not ‘fy’, while the 
letter ψ is called ‘ppsee’ in Greek and not ‘sy’. 

The sixth column represents the correct way of 
pronouncing the name of each letter, based on an adap-
tation of the IPA. The column that follows includes the 
corresponding phonetic (IPA) sounds of what each let-
ter sounds like. The last column includes a few 
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examples of what the Greek letters represent in mea-
surement or statistics. This column is not intended to 
be a comprehensive list that includes all the meanings 
of each letter. In addition, there are some letters (e.g., 
the letters ι, ν, υ) that do not represent any specific 
symbol in measurement or statistics because they are 
quite similar to letters that are used in the Roman 
alphabet. 

Finally, I would like to make clear that the purpose 
of creating this table was not to ‘force’ people to use the 
correct pronunciation of these letters. This is especially 
the case since I find myself pronouncing them in the 
Americanized way. I created this table to provide a valu-

able resource for people in measurement or statistics 
who would like to learn about the Greek letters, with-
out having to open a dictionary to do so. However, 
determining the most convenient way to pronounce the 
letters (with the Greek or USA pronunciation) in the 
fields of measurement and statistics is beyond the scope 
of this paper.
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Table 1. Greek Letters and Their Proper Pronunciation

Capital Small Corresponding   Phonetic (IPA)  Examples of what it
Greek Greek English Sounds Letterʼs pronunciation of Phonetic (IPA) represents in statistics/
Letter Letter letters like name letterʼs name sounds measurement

Α α A another halfa [ál.fa]  [a] Significance level
Β β V validity veeta [ví:.τa] [v] Beta weight
Γ γ Y yes yhahmma [γá.ma] [γ] Lower asymptote, or 
       pseudo-guessing parameter
∆ δ Th then thelta [δεl. τa] [δ] Difference
Ε ε E effect hepsilon [ε.psi.lon] [ε] Residual
Ζ ζ Z z-score zeeta [zí:.τa] [z] Proportion-correct score
Η η Ee median eeta [í:.ta] [i] Eta-squared
Θ θ Th think theeta [θí:. τa] [θ] IRT Ability
Ι ι Ee meal yiota [ió.τa] [i] 
Κ κ K factor gkappa [ká:.pa] [k] Kappa coefficient
Λ λ L length lamtha [lám.δa] [l] Wilk’s lambda
Μ µ M mean mee [mi] [m] Mean
Ν ν N normal nee [ni] [n] 
Ξ ξ X taxi ksee [ksi] [ks] Number-right true score
Ο ο O ordinal omikron [ó.mi.kron] [o] 
Π π P ape pea [pi] [p] Pi = 3.14159…
Ρ ρ R more rho [Rç] [r] Correlation, Reliability
Σ σ S statistics seehyma [síγ.ma] [s] Sum, SD
Τ τ T ate tahf [τaf] [τ] True score
Υ υ Ee median eepseelon [í.psi.lon] [i] 
Φ ϕ F figure fee [fi] [f] Phi-coefficient, Normal 
       cumulative distribution 
       function
Χ χ H histogram hee [hi] [h] Chi-square
Ψ ψ Pps ipsilon ppsee [psi] [ps] Logistic distribution of a
       density function
Ω ω O ordinal omehya [o.mε.γa] [o] Omega-square
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Contributed by Michael Kahn, Wheaton College (MA)

A dataset from Rosner’s Fundamentals of Biostatistics 
concerns the relationship between forced expiratory 
volume (FEV, a measure of respiratory function) and 
smoking, along with several other variables. The data 
include information from 654 children and young 
adults, ranging from 3 to 19 years of age. The 
variables considered here are FEV (in liters), self-
reported smoking status, and age (in years). 

The boxplots in Figure 1 compare the distributions 
of the smokers’ FEV with the nonsmokers’ FEV.

Question #1: Using the boxplots, do nonsmokers 
appear to have, on average, higher FEV scores than 
smokers?

Question #2: Is it sensible to use these data to dis-
cuss, in isolation, the effects of smoking on FEV?  In 
particular, would you conclude that smoking causes 
young people to strengthen their respiratory function?  
If not, can you suggest an alternative explanation for 
the differences in the boxplots?

Figure 2 compares the nonsmokers’ and smokers’ 
relationships between FEV and age. The “curves” are 
computed using lowess (Cleveland, 1979); they provide 
estimates of the (conditional) average FEV for a given 
age.

Question #3: Using the scatterplot and lowess 
curves, do the nonsmoking 16-year-olds appear to 
have, on average, stronger respiratory function than 
those 16-year-olds who smoke? 19-year-olds? 10-year-
olds? Suggest some possible explanations for the 
inconsistencies in your answers to these questions.
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Data Sleuth

An Exhalent Problem

Figure 1: Forced Expiratory Volume by Smoking Status

Figure 2: Forced Expiratory Volume by Age and 
Smoking Status
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Figure skating is a wonderful sport, combining 
athleticism with artistry. However, unlike most other 
sports, figure skating judging is subjective. It is not 
like hockey, soccer, or lacrosse in which the team that 
scores the most goals wins, or like swimming or 
running in which the fastest person wins. Rather, a 
panel of judges decides the winner of a figure skating 
competition. The winner is chosen based on the 
subjective opinions of human beings who rank the 
performances of each of the skaters in the 
competition. This subjectivity sometimes causes 
skaters, coaches, commentators or fans to question the 
fairness of the judging for a particular event. How can 
we determine statistically when a specific figure 
skating judge produces a ranking of the skaters that is 
significantly different from the rankings of the other 
judges? We describe a technique, using a bootstrap 
distribution, for identifying an inconsistent judge and 
apply the method to competitions from the 2002 
Winter Olympic Games. 

Measuring a Judge’s Judgments
The system for determining the final placement of 
skates in a competition is somewhat complex (see 
sidebar) due to safeguards that are designed to prevent 
any one judge from exerting too much influence on 
the final result. See Basset & Persky (1994) or Russell 
(1997) for additional discussion of the merits of the 
“best of majority” method. The primary feature of this 
judging system that is important for our comparison 
of judges is that each judge produces a rank ordering 
of all of the skaters in a competition. For example, 
Table 1 gives the rankings for each of the nine judges 
(and the final placements) for the ladies free skate 

event at the 2002 Winter Olympics. Judges are 
human, they each have their own tastes and 
preferences, they may notice different elements of a 
particular performance and therefore we should not 
expect them to produce identical rankings for a 
particular set of skating performances. A certain 
degree of variability in the judge’s rankings is 
inevitable, particularly in a close competition where 
the distinctions between the quality of the 
performances are small. But, occasionally one judge 
appears to stand out as being in noticeable 
disagreement with the other judges. Our task is 
determine when the deviations of one judge’s rankings 
are significantly larger than one would expect to see, 
given the variability of the rankings for all the judges 
in that competition. 

Since the methods for determining the final place-
ment of skaters should not be unduly influenced by one 
inconsistent judge, we can determine that one judge is 
in significant disagreement with the other judges if that 
judge’s rankings differ significantly from the final place-
ment of the skaters. Although disagreeing with the 
other judges might not necessarily be bad, we will refer 
to the extent that a judge’s rankings match the final 
placement of the skaters as the “success” of that judge. 
The rankings of a successful judge will closely match 
the final placement of the skaters, while the rankings of 
an unsuccessful judge will disagree with the final place-
ments. To determine how much an individual judge 
agrees with the final placement, we will look at the 
Spearman rank correlation (just a correlation between 
the ranks of the data) between that judge’s ranking and 
the final placement of the skaters. A high correlation 
will indicate a successful judge, while a lower correla-
tion will indicate a less successful judge.

Table 2 gives the rank correlations of each judge 
with the final placements, from the ladies free skate 
event at the 2002 Winter Olympics.

The first thing to notice when looking at these cor-
relations is that they are all extremely high. A perfect 

STATS 36  ■  WINTER 2003     31

Kari Frazer LockRobin Lock

The Statistical 
Sports Fan

Judging Figure Skating 
Judges

Kari Frazer Lock is a junior majoring in mathematics 
and psychology at Williams College. She has earned United 
States Figure Skating Association gold medals in freestyle, 
moves in the field, and ice dancing. She skates professionally 
in shows across the U.S. and abroad.



ASA

correlation (where the judge agrees exactly with the 
final placements) is 1.0, and only one of these correla-
tions is even below 0.9. This tells us that each of the 
judges is in general agreement with the final placement 
of the skaters (and so in general agreement with each 
other). This is good news! It tells us that judges are 
basing the judging more on the skaters than on individ-
ual preferences (if they were judging based on individual 
preferences, the correlations would not be so high). 
However the skaters are being ranked (hopefully it is 
based on their skating performance, but it could also be 
based on their reputation, among other things), they 
are being ranked in a way in which the judges agree. 
The rankings are not arbitrary from judge to judge, and 
thus the final placements are more credible and mean-
ingful.

Looking at the correlations for each judge, you will 
notice that the correlation between Judge #3’s rankings 
and the final placement is lower than the correlations of 
the other judges. Obviously, one judge must have the 
lowest correlation. How do we know if the correlation 
for Judge #3 is simply the lowest correlation of these 

judges, or if it is significantly lower than the correlations 
of the other judges?

Ordinarily, to determine if a sample statistic (such 
as Judge #3’s correlation) is statistically significant, we 
would compare the statistic to some underlying distri-
bution, look at how far out on the distribution it lies, 
and calculate the probability of a sample statistic being 
that far out if all of the judges were consistent. If this 
probability is small, then the sample statistic is statisti-
cally significant and we would conclude that the judge 
is inconsistent with the others in the panel. But what is 
our underlying distribution in this case? We can’t really 
compare the sample results to a population of all possi-
ble judges, or to all events, since each event is different 
and some events are harder to judge than others (some-
times there is a clear order in which the skaters should 
be ranked, which would give extremely high correla-
tions, and sometimes all the skaters are about the same, 
which would give low correlations). Here we are only 
comparing the correlation of Judge #3 to the correla-
tions of the other eight judges of the event, so its 
difficult to determine a probability for how “unusual” 
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Table 1: Ranks given by nine judges of the Ladies Free Skate at the 2002 Winter Olympics

Final Placement Skater  J1 J2 J3 J4 J5 J6 J7 J8 J9
1 HUGHES Sarah USA 1 4 3 4 1 2 1 1 1
2 SLUTSKAYA Irina RUS 3 1 1 1 4 1 2 3 2
3 KWAN Michelle USA 2 3 2 2 2 3 3 2 3
4 COHEN Sasha USA 5 2 4 3 3 4 4 4 4
5 SUGURI Fumie JPN 4 8 5 5 5 7 5 5 5
6 BUTYRSKAYA Maria RUS 6 5 8 7 12 5 8 7 6
7 ROBINSON Jennifer CAN 7 7 7 9 6 8 10 6 7
8 SEBESTYEN Julia HUN 8 10 12 8 7 6 12 8 8
9 KETTUNEN Elina FIN 9 9 13 6 12 10 7 11 14
10 VOLCHKOVA Viktoria RUS 10 6 14 11 10 12 6 9 15
11 MANIACHENKO Galina UKR 13 12 11 12 16 11 11 10 9
12 FONTANA Silvia ITA 14 11 18 16 9 15 9 12 10
13 LIASHENKO Elena UKR 15 13 6 10 8 14 13 14 16
14 ONDA Yoshie JPN 11 14 10 15 15 13 15 13 11
15 HUBERT Laetitia FRA 12 17 17 13 11 16 14 15 13
16 MEIER Sarah SUI 16 16 9 14 14 9 16 16 12
17 GUSMEROLI Vanessa FRA 17 15 15 17 17 18 17 17 17
18 SOLDATOVA Julia BLR 19 18 22 20 21 17 18 18 19
19 HEGEL Idora CRO 20 21 16 22 18 19 21 19 18
20 GIUNCHI Vanessa ITA 18 19 20 21 19 20 20 20 20
21 BABIAKOVA Zuzana SVK 22 20 19 19 20 21 19 22 22
22 KOPAC Mojca SLO 21 22 23 18 22 22 22 21 21
23 LUCA Roxana ROM 23 23 21 23 23 23 23 23 23

Table 2: Rank correlations for judges of the Ladies Free Skate

J1 J2 J3 J4 J5 J6 J7 J8 J9
.979 .970 .876 .953 .928 .960 .966 .993 .951
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the correlation of 0.876 is in this case. 

Constructing a Bootstrap Distribution
A general technique for using the data in a sample to 
produce a reference distribution for a sample statistic 
is called the bootstrap. The basic idea is to randomly 
select elements of the sample itself to generate new 
samples and then to examine the distribution of the 
statistic in question for all of these new samples. Thus 
we don’t need to make assumptions about the 
distribution of the underlying population itself; 
instead we let the bootstrap samples reveal relevant 
structure. In our case of figure skating judges, we use 
the rankings provided by the nine actual judges to 
produce a much larger “population” of judges with 
similar rankings. We can then create a whole 
distribution of rank correlations of the rankings of 
these simulated judges with the actual final 
placements of the skaters in the competition and see 
where the correlation of Judge #3 fits in this 
distribution. For more information on bootstrap 
techniques see Efron and Tibshirani (1993). 

We start with the 9 ordinals (rankings) each skater 
received (one from each “real” judge). To create a sim-
ulated judge’s score for a particular skater, randomly 
choose one of the 9 ordinals actually received by that 
skater. For example, since Michelle Kwan received five 
2nd’s and four 3rd’s, each simulated judge has a 5/9 prob-
ability of giving Michelle 2nd, and a 4/9 probability of 
giving Michelle 3rd. (Thus, the simulated judge is judg-
ing the event as a real judge would) Thus we are 
simulating the behavior of a real judge, since the simu-
lated ordinal given each skater was actually received by 
the skater from a real judge, and if more actual judges 
gave a skater one ordinal, more simulated judges would 
tend to give a skater that ordinal. Then repeat this ran-
dom selection from the ordinals received by the other 
skaters. In actual competitions, a judge rarely gives two 
skaters the same ordinal (an exact tie); but this could 
easily occur for our simulated judges (for example, the 
random selection might choose ordinals of “3” for both 
Irina Slutskaya and Sasha Cohen). Ties are routinely 
handled in a rank correlation by averaging, so Slutskaya 
and Cohen would both be given a 3.5 rank and the next 
best ordinal would get rank 5. 

If you’d like to generate your own new “judge” by 
hand, use 23 digits from a random number table (ignor-
ing zeros) to determine which of the nine judge’s ordinal 
you’ll choose for each of the 23 skaters in Table 1, then 
determine the new judge’s ranking by ranking those 
ordinals and averaging ties. For example, suppose that 
you enter a random number table and find the first five 
digits to be: 26885. Then your simulated judge would 
assign judge 2’s ranking to the first skater (4 for 
Hughes), judge 6’s ranking to the second skater (1 for 
Slutskaya), judge 8’s ranking to skaters 3 and 4 (2 for 
Kwan, 4 for Cohen), and judge 5’s ranking to the fifth 
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After watching an individual or pair skate, each 
judge awards two scores (on a 0-6.0 scale); one for 
the technical merit of the performance and the other 
score for its artistic presentation. These scores are 
then added together to give a combined score for 
each skater. After all the skaters have competed, 
they are ranked for each judge according to these 
combined scores, with the skater with the highest 
combined score receiving a first from that judge. In 
the case of a tie, the skater with the higher presen-
tation mark is ranked higher. This results in each 
skater receiving an ordinal (rank) from each judge, 
with 1 being the top rank. The ordinals for the ladies 
free skate from the 2002 Winter Olympics are 
shown in Table 1. Final placements are determined by 
comparing the ordinals of the skaters. 

The key factor in determining most final place-
ments is a skaterʼs median ordinal, the position 
where a majority of the judges (at least 5 of 9 in our 
case) place the skater at or better. A skater with a 
better median ordinal will always finish ahead of a 
skater with a worse (larger) median ordinal. When 
skaters finish with the same median ordinal, prefer-
ence is given to the skater who has more judges 
giving that rank or better (called the size of the 
majority). If a tie still exists, the actual ordinals on the 
majority side (those at or better than the median) 
are added, with preference given to the smaller sum. 
If the tie is still unbroken, the ordinals for all of the 
judges are added. If that fails to determine a winner, 
the skaters are officially listed as tied. 

Letʼs see how these rules apply to determine 
some of the final placements for the ladies free 
skate shown in Table 1. Five of the nine judges (a 
majority) placed Sarah Hughes in first, so she won 
the top spot (and the gold medal). Irina Slutskaya 
and Michelle Kwan each had a median ordinal of 2, 
but Kwan only got five judges at 2nd or better, while 
Slutskaya had six, so Slutskaya finishes second and 
Kwan drops to third. Sasha Cohen and Fumie Suguri 
had median ordinals of 4 and 5 respectively, so they 
are easily placed in those positions. Next come Maria 
Butyrskya and Jennifer Robinson, each with a median 
ordinal of 7 and exactly six of the nine judges placing 
them at 7th or better. Butyrskyaʼs majority included 
ranks of 6, 5, 7, 5, 7, 6 while Robinsonʼs were 7, 7, 7, 
6, 6, 7, so Butyrskyaʼs sum is smaller and she gets 
the sixth spot and Robinson goes to seventh in the 
final placements. 

An important goal of this system is to prevent a 
lone judge from single-handedly helping or hurting a 
skater by giving them a mark much lower or higher 
than they deserve. For example, if you look at the 
results for Sasha Cohen in Table #1, all that mattered 
in her ranking was that 8 of her 9 ordinals were 4th or 
better. She would have received the same final 
placement if Judge #2 had not been so generous 
giving her 2nd or if Judge #1 had ranked her 17th 
instead of 5th. While the judgesʼ opinions should 
certainly determine the final outcome of the event, 
no rogue judge should be able to unduly influence 
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skater (5 for Suguri) and so on. Accounting for the tie 
(between Hughes and Cohen) and assuming that no 
later skater is ranked in the top five, the “random” 
judge’s rankings would start with (1) Slutskaya, (2) 
Kwan, (3.5) Hughes, (3.5) Cohen and (5) Suguri. 

Using random selections (with the software pack-
age Fathom), we generated 1000 simulated judges, and 
found the correlation of the rankings of each simulated 
judge with the final placements. Since the correlation is 
a measure of the “success” of the judge in matching the 
actual final placements, this set of simulated correla-
tions provides a yardstick for identifying where a typical 
judge’s correlation should lie for this particular event, 
considering random variation. A histogram of these 
bootstrap correlations is shown in Figure 1. 

We can see that Judge #3’s correlation of 0.876 falls 
toward the extreme lower end of the distribution. The 
great majority (998 out of 1000 to be exact) of the gen-
erated judges have correlations higher than that of 
Judge #3. If Judge #3 really was judging in the same 
way the other judges were, it would be very rare for her 
to be that far out in the distribution. The approximate 
p-value from the bootstrap distribution is the propor-
tion of simulated judges with a correlation as low or 
lower than the judge in question. Thus, the p-value for 
Judge #3 is about 0.002 and we can conclude that the 
correlation of Judge #3 is significantly low and, there-
fore, Judge #3’s rankings are not consistent with the 

other judges. This could indicate a bias, poor quality 
judging, a mistake by the judge, or most likely just a 
difference in opinion. But, whatever the reason, Judge 
#3’s assessment of the Ladies Free Skate event at the 
2002 Winter Olympics was significantly different from 
the other 8 judges of that event.

The Notorious French Judge
What about the famous case of the French judge of 
the pairs long program at the 2002 Winter Olympics? 
She was accused of being biased to favor the Russian 
pair over the Canadians. But did she really judge the 
event significantly differently than the other judges? 
Below are the correlations for the 9 judges of the pair 
long program (Table 3).

The first thing you should notice about these cor-
relations is that they are extremely high! Every one of 
them is above 0.98, which means that the judges agreed 
very much on the ranking of the skaters in that event. 
These strong correlations could be due to very accurate 
judging by the panel, clear differences between the 
performances of the skaters, or a tendency to pre-judge 
a competition and placed skaters according to their past 
reputations. Where was the notorious French judge 
among these correlations? Surprisingly, she was Judge 
#4, who had the highest correlation of the whole panel. 
In fact, when we did the bootstrap (see Figure 2), she 
was significantly more in agreement with the final place-
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Figure 1. Rank correlations for 1,000 simulated judges of the Ladies Free Skate

Table 3: Rank correlations for judges of the Pairs Long Program

J1 J2 J3 J4 J5 J6 J7 J8 J9
.994 .994 .988 .998 .997 .986 .992 .994 .983
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ments than the other judges. Her rankings differed from 
the final placements by just a single permutation of the 
8th and 9th place positions. By our definition of “suc-
cessful” she judged the event extremely accurately, yet 
she was accused of bias. Why? Her rankings of the 1st 
and 2nd place skaters were the same as the original final 
placements, but were critical for determining those 
placements since the other 8 judges had split evenly, 
giving four firsts and four seconds each to the Russian 
and Canadian pairs. Many observers of the competition 
believed that the Canadian pair had skated a superior 
program, so the judging was scrutinized with extra 
attention. The controversy erupted with allegations that 
the French judge had been pressured or agreed to a deal 
to favor the Russian pair over the Canadians before the 
competition even started. In light of these allegations, 
the French judge’s rankings were disregarded, produc-
ing an exact tie for the top spot and duplicate gold 
medals were awarded. While the distinction between 
first and second in a close competition is very import-
ant to the skaters, their fans and countries, a single 
permutation may have relatively little affect on the rank 
correlations between an individual judge and the final 
placements. So, our bootstrap procedure would not 
detect that sort of bias in judging.

Conclusion
The bootstrap technique provides a means to assess 
when the correlation between an individual judge’s 
rankings of the skaters in a competition and the final 
placements of those skaters by the entire panel of 
judges is unusually low. While we have applied these 
ideas to two events from the 2002 Winter Olympics, 
they could also be applied to other figure skating 
competitions at various levels or to other “judged” 

events such as gymnastics, diving, or freestyle skiing. 
Interesting avenues for future work would be to try to 
characterize the distribution of rank correlations 
among judges for different events, levels of 
competition, numbers of judges, or types of sports. Is 
the skewed shape of the bootstrap distribution that we 
see in our two examples typical of most cases? Do 
pairs skating competitions tend to produce higher 
correlations than individual events? Can we follow the 
same judge over several competitions to determine a 
consistent pattern of disagreement? These methods 
can help determine whether a judge is really 
inconsistent with the rest of the judges or just 
exhibiting the sort of random variation in rankings 
that one would naturally expect for that particular 
competition. 
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Figure 2. Rank correlations for 1000 simulated judges of the Pairs Long Program
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In our society, it is usually considered impolite to ask 
how much money a person makes. However, suppose 
that you are single and are interested in dating a 
particular person. Of course, salary isn’t the most 
important factor when considering whom to date, but 
it is certainly nice to know (especially if it is high!). 
Well, in this case, the person you are interested in 
happens to be a teacher, so you know a high salary 
isn’t an issue. Still, you would like to know how much 
she makes, so you take an informal survey of 13 
teachers that you know. Their salaries (in thousands of 
dollars) are listed below:

salary (in thousands) 39.9, 47.6, 49.3, 51.6, 47, 46.2, 
48.5, 51.7, 58.1, 56.1, 63.7  

Based on this data, what can you conclude? Well, 
absent any other information, your best estimate for her 
salary would be the average ($50,882). However, it is 
not likely that your estimate will be correct. To get an 
idea of how far off you might be, you can calculate the 
standard deviation:

T h u s , y o u r 
best estimate for her salary is $50,882 but a typical 
estimate will be off by about $6500.

So, how can you improve your guess? You remem-
ber that one of the teachers told you that teachers’ 
salaries are somewhat dependent on how many years a 
teacher has been teaching. So, you go back to each of 
the original 11 teachers you surveyed and ask them for 
their years of experience. 

salary (in thousands) 39.9, 47.6, 49.3, 51.6, 47, 46.2, 
48.5, 51.7, 58.1, 56.1, 63.7  
Years of experience 4, 8, 5, 9, 1, 4, 4, 6, 8, 7, 11  
(source: Hacienda La Puente Unified School District 
Salary Schedule)

Making a scatterplot of salary (y) vs. years of 
experience (x) you see that the teacher was right. 
There is a positive association between years of 
experience and salary. 

You happen to know that the person you are inter-
ested in has been teaching for 8 years. Using this 
information, how can you predict this potential mate’s 
salary? Using JMP-Intro (or some other software pack-
age), you can calculate the least squares regression line. 
In this case, sal̂ary = 40.61 + 1.686 years. Therefore, 
you predict that she makes: sal̂ary = 40.61 + 1.686(8) = 
54.098 or $54,098.

When you ask most statistics packages to calculate 
a regression line, however, you get a lot of other infor-
mation besides the regression line. All of the output can 
look intimidating at first, but with a little time and 
patience most of it can (and should) be understood by 
a student in an AP Statistics class. In most cases, spend-
ing a little time with the output will greatly enrich your 
understanding of the relationship between the two 
variables. 

The output below is from JMP-Intro, but it is very 
similar to the output from other software packages:
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The first section simply reports the regression line.
The second section gives a summary of how well 

the line fits the data. We will come back to this section 
after we have looked at the others. 

The third section is called “Analysis of Variance.” As 
the name suggests, the results in this section analyze the 
variance (in this case, the variance of the response vari-
able, salary). First, let’s consider the last row, labeled “C. 
Total.” Under the column “Sum of Squares” we see a 
familiar number: 421.36. This was the same number 
that we used when we calculated the standard deviation 
of y. Thus, the Total Sum of Squares (or SSTotal) is

This is a measure of the total variability 
in salary (from the mean salary). To find the standard 
deviation we took the square root after we divided by 
11 – 1 = 10, which is the number we see under the 
column called “DF” (degrees of freedom). Note: For a 
discussion of degrees of freedom, see Gretchen Davis’ 
article in STATS issue 33 (2002). 

Moving up one line in the “Analysis of Variance” 
section we see a row called “Error.” Under the Sum of 
Square column, we see the number 191.35. This is a 
measure of the variability in salary from the regression 
line:

Since the regression line 
is usually better for making predictions than the mean 
(see Figure 3, points tend to lie much closer to the ŷ line 
than to the ȳ line), SSError should be less than SSTotal 
(and will never be more). 

The quantity SSError is also useful because we can 
use it to calculate the standard deviation about the 
regression line: 

Thus, when we use the regression line to make 
predictions, the typical prediction will be off by only 
$4610 (as compared to $6490 when we used the 
mean as an estimate). Notice that the number 4.610 
shows up in the “Summary of Fit” table as the “Root 
Mean Square Error” (in many packages this is simply 
called “s”). Thus, in the regression setting, the symbol 
s represents the typical deviation from the least 
squares regression line. However, in the univariate 
case, s represents the typical deviation from the mean. 
In some books, se is used for the regression setting and 
sx for the univariate case. 

Also, notice that several of the numbers in our 

Figure 2: JMP-Intro Regression Analysis
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equation show up in other places on the table. This is 
no coincidence! The denominator in the square root 
(11) is the same as the DF Error from the table. The 
quotient of the Sum of Squares and Degrees of Freedom 
(SS/DF = 21.261) is called the Mean Square (Error). 

The first line in the “Analysis of Variance” table is 
called “Model.” In this case, DF Model = 1 since we are 
only using 1 predictor variable (years). In multiple 
regression, DF Model = number of predictor variables. 
The Sum of Squares for the Model is a measure of the 
variability in salary that is accounted for by the relation-
ship between years and salary: 

T h i s brings us 
to an important relationship between the various Sums 
of Squares: SSTotal = SSModel + SSError. That is, the 
total variability in salary (SSTotal) is partitioned into 2 
parts: the part that is explained by the model using 
years (SSModel), and the part that is still unexplained 
by the model using years (SSError).

In addition to the standard deviation about the 
regression line (s, or root mean square error), another 
common way to judge the quality of a model is to deter-
mine what percentage of the variability in salary is 
accounted for by the model. This is called the coeffi-
cient of determination, often denoted by r2 or R2. To 
determine the value of r2, we examine the ratio of the 
variability explained by the model and the variability in 
the response:

w h i c h  c a n also be found 
in the “Summary of Fit” table. Thus, 54.6% of the 
variability in salary can be explained its relationship 
with years. 

A few final notes about the “Analysis of Variance” 
table: The F statistic is calculated to determine the over-
all “usefulness” of the model

The 
“Prob > F” is the probability that we would get an F 
ratio this big by random chance assuming that the 
model is not useful (i.e., that knowing the years of 
experience is of no help in predicting salary). Thus, 
since the p-value is pretty small (.0094) we can say 
that the model is useful. 

Now it is time to go back to the “Summary of Fit” 
table. As described earlier, “RSquare” is the coefficient 
of determination (r2) and “Root Mean Square Error” is 
the standard deviation about the regression line (s). 
Also included in the table are the “Mean of Response” 
which is the average salary (ȳ) and the number of 
“Observations” or sample size (n). Finally, “RSquare 
Adj” is a statistic used when evaluating multiple regres-
sion models. So, in the case of simple linear regression 
(one predictor variable), we can usually ignore the 
adjusted r-squared value. 

The last section (Section 4) in the computer output 
is the table of “Parameter Estimates.” In simple linear 
regression we find models in the form yˆ = a + bx, where 
“a” is the y-intercept (or constant) and “b” is the slope 
(or coefficient of the dependent variable). In our model, 
the estimate of the intercept is 40.61 and the estimate 
of the slope is 1.686. Notice that these are the same 
numbers that appear at the very top of the output 
under “Linear Fit.” Based on these numbers, we can 
predict that a beginning teacher (that is, a teacher with 
0 years of experience) will make about $40,610 and 
that for each additional year of experience, the salary 
will increase by about $1,686 on average. 

Of course, these values are only estimates based on 
the 11 observations in your sample. Other samples 
from the same population of teachers would certainly 
give different estimates (although hopefully they will be 
close!). How precise are the estimates? The “Std. Error” 
column gives us this information. For example, for the 
sample slope the std. error = 0.5126, thus we can say 
that in sample like ours, the typical estimate of the 
slope will be off from the population slope by about 
0.5. Taking different samples will give different slope 
estimates, but they should typically vary by only about 
.5126

We can also use the standard error make inferences 
about the population slope. For example, the 95% 
Confidence Interval with 9 degrees of freedom would 
be 1.686 ± 2.262 (0.5126) = (.5265, 2.846). Also, the 
t-ratio is the t-statistic for a test of slope = 0 
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Figure 3: Comparison of Regression Line to ȳ  line.
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With 9 degrees of freedom, the p-value is .0094, 
which indicates that we have strong evidence that the 
population slope is not 0. Notice that this is the same 
p-value we observed from the F-test in the “Analysis of 
Variance” table. Also, notice that t2 = F (3.292 = 10.82). 
Note however, that these relationships only hold in the 
simple linear regression case (one predictor variable). 

It is important to note that the standard computer 
output does not allow you to check the conditions for 
making inferences about the slope (e.g., the linear 
model is appropriate). To check the conditions, it is 
important to look at the residuals (y – ŷ). The residual 
plot for our data is shown below. There is no obvious 
pattern, so the linear model seems appropriate. Also, 
the variability of the residuals seems relatively constant 
across all values of x.

Finally, it is important to check if the distribution of 
residuals is approximately normal. Based on the histo-
gram below, the normality of the residuals seems 
plausible. 

The first line in the parameter estimates table gives 
similar information about the intercept. The estimate of 
the population intercept is $40,612 with a standard 
error of $3418. The t-ratio (11.88) is for a test that the 
population intercept is 0. Since the p-value is very small 
(<.0001) we can safely conclude that the population 
intercept is not 0. 

So, what have we learned from our investigation? 
We have learned that knowing how many years a 
teacher has been teaching allows us to make better 
estimates than simply using the average salary (the typ-
ical error went down from $6490 to $4610 and about 
54.6% of the variability in salary was explained by 
years). We also learned that this relationship was not 
due to chance (p-value = .0094). We didn’t learn the 
exact salary of your prospective spouse, but we came 
up with a pretty good estimate using statistics. And 
besides, money isn’t everything, right??
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Figure 4: Residual Plot

Figure 5: Histogram of Residuals
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I guess I might just as well confess. I like a good 
mystery, and — just so you know — am somewhat 
partial to Agatha Christie. To those who know a little 
about statistics and enjoy a good murder mystery as 
much as a well-crafted random variable, it might seem 
that solving statistical problems is a lot like detective 
work, except that statistics problems are solved even 
when nobody gets killed, kidnapped, robbed, 
defrauded, or even mildly offended.

The practicing statistician, working on a case, must 
round up the usual suspects, query the reluctant data, 
discredit the offending outliers, and in the end unmask 
that pesky parameter with 95% confidence on the last 
page. So too, must the working detective query the 
reluctant witnesses, discredit the red herring suspects, 
and unmask the appropriate miscreant with 100% con-
fidence. As the mystery aficionado will appreciate, I’m 
excluding from this analogy that outlier, Trent's Last 
Case, wherein a different appropriate miscreant is 
unmasked with 100% confidence at least 5 times; the 
detective equivalent of data mining, I suppose.

Despite the obvious parallels between doing detect-
ing and doing statistics, one would be hard pressed to 
find any statistically literate crime fighter after Sherlock 
Holmes. That famous sleuth was apparently a data ana-
lyst, as recorded by the faithful Dr. Watson in The 
Adventure of the Blue Carbuncle: 

“I can see nothing,” said I, handing it back 
to my friend. “On the contrary, Watson, 
you can see everything. You fail, however, 
to reason from what you see. You are too 
timid in drawing your inferences.”

While more modern fictional detectives have run 
the gamut from Clouseau to Colombo (laughable to 

lovable) they seem uniformly devoid of statistical 
knowledge – until now. The single exception would 
seem to be one Csiss…Doctor Csiss. Hmm, not quite 
the same resonance as Bond…James Bond. (Now that I 
think about it, Csiss…..Doctor Csiss sounds an awful 
lot like a python looking at the latest strain of tasty 
laboratory mouse in a Charles River Laboratories cata-
log.) Being that as it may, Csiss IS a statistician, and he 
has been called in by Scotland Yard to help solve a 
baffling case in a mystery I just finished, Stanislaw 
Lem’s The Investigation. 

The case at hand is baffling not so much because 
people have been murdered on English moors – heaven 
knows, that has been going on since the Hound of the 
Baskervilles was haunch high to a Chihuahua. No, what 
makes the case baffling is that the bodies seem to be 
coming back to life. (Take THAT, Professor Moriarty!) 
This returning to the land of the living invites all sorts 
of scientific, philosophical, and theological speculation 
in the course of the investigation, and Sciss…Doctor 
Sciss is one of those doing the speculating. It is not 
always clear to this reader which of those strands of 
thought he represents, but his dominant modus operandi 
seems to be represented by this exchange. Csiss speaks:

“As we have seen, the classical methods of 
investigation – the collection of evidence 
and the search for motives—have failed 
completely. Consequently, I have utilized 
the statistical method of investigation. It 
offers obvious advantages. […] Thus, we 
proceed by preparing a statistical break-
down of all the phenomena. Until now this 
method has almost never been used in a 
criminal investigation, and I am very 
pleased that I now have an opportunity to 
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introduce it to you gentlemen, together 
with my preliminary findings….”

With this, Sciss proceeds to calculate a geographic 
confidence interval, pausing only to toss out an outlier 
in the form of one body at the Medical School that 
“doesn’t fit this pattern.” The Scotland Yard inspector 
assigned to the case – apparently not a confidence inter-
val sort – recasts Sciss’ analytical results in the form of 
a hypothesis: “Are you trying to tell us,” he exploded, 
“that an invisible spirit of some kind came up out of 
those damned moors, flew through the air, and snatched 
the bodies?”

As you may imagine, this is not your typical mys-
tery. At times Sciss seems more a metaphysician than an 
empiricist, and his arguments seem to border on fan-
tasy, but that’s just what Karl Pearson thought about 
Fisher’s methods. So if you pick up The Investigation for 
an afternoon of escape from your statistics assignment, 

be prepared for something of a different kind of detec-
tive story. But then, who knows? Perhaps Csiss’ 
statistical brand of solving crimes will escape from the 
pages of fiction and we will see his like being inter-
viewed on Larry King!

If so, I hope his real life counterpart has a more 
euphonious name. Perhaps something like Rumples-
tiltskin…Cornelius Rumplestiltskin.
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