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Baseball is called the “Great American Pastime.” It 
certainly deserves that title. However, it appears to 
me that sports statistics is an even bigger national 

pastime. Do you know someone who can tell you the 
batting averages of the top hitters in baseball history, or 
what was the longest baseball game ever played was, 
who played in it, where, and when? I do. I always have 
been amazed at sports fans’ knowledge of sports statistics. 
Sports statistics are the ammunition used in the eternal 
debates about who’s the best. 

My introduction to statistics started with baseball—
learning to calculate my batting average playing Little 
League baseball. I learned it was immensely important to 
be able to do that, and I learned how to do the calculations 
quickly to update my average after every game.

In his book Numbers Game: Baseball’s Lifelong 
Fascination with Statistics, Alan Schwarz presents a 
history of baseball statistics that shows how baseball and 
numbers seem to be inseparable. It is fascinating to read 
about the origins of sports statistics. (2004, St. Martin’s 
Press, ISBN 0-312-322224) 

The questions in sports statistics are endless: 

• Who had the most career hits in baseball? How many 
   hits did he have? 
• Where is the largest sports stadium in the world?
• What was the largest attendance ever at a sporting 
   event?
• Are there more visits to hospital emergency rooms 
   each year due to basketball or football?
• In the Mexico City Olympics, Bob Beaman broke 
   the world record in the long jump by 2 feet! Can you   
   calculate the probability of a man jumping an 
   astounding 29 feet, 2.5 inches in 1968? 
• During his career, Edwin Moses compiled a record of 
   107 consecutive wins in the 400-meter hurdles. Think 
   about it. What are the chances of a streak that long?
• Speaking of streaks, did you know that Lou “Iron 
   Man” Gehrig played in a record 2,130 consecutive 
   baseball games? 

In this issue of STATS, Jim Albert looks at the 
question, “Does a batting average measure a hitter’s ability 
or luck?”

Matthew Strand shows how scatterplots can tell us 
about winning long-distance races, such as the NCAA 
Cross Country Championships and the New York City 
Marathon.

What does it take to win in professional football? 
Patrick Bartshe uses regression analysis to tackle this 
question as he describes the recipes for winning in the 
National Football League. 

We welcome Schuyler Huck to the STATS editorial 
board. As the STATS Puzzler, he challenges our statistics 

skills by asking us to compute the batting averages of Bo, 
Jo, and Mo. See if you can hit the Puzzler’s curve ball.

The boxer Mohammad Ali once proclaimed, “I’m the 
Greatest.” How do you measure greatest? In July, Lance 
Armstrong won cycling’s premier event, the Tour de 
France, for an unprecedented seventh straight time. Peter 
Flanagan-Hyde asks, “Is Lance the Greatest Cyclist Ever?”  
See his answer in AP Statistics.

The use of performance-enhancing drugs by pro-
fessional athletes has been a hot topic this past year. One 
public opinion poll by the Associated Press showed two-
thirds of the American public was in favor of denying a 
place in the Baseball Hall of Fame to anyone who used 
steroids. In a new STATS department, R U Simulating?, 
Bruce Trumbo shows how to use simulation to answer 
questions about sample sizes in public opinion polls. Try 
the statistical challenges he presents at the end. Then, 
send us your answers and you could win an American 
Statistical Association T-shirt!

In this issue’s Ask STATS, Jackie Miller says, “Hey 
Coach, I have some questions...” She has some answers 
from sports statistics expert Robin Lock about basketball, 
golf, and—of course—baseball.

Taking a swing at the question of who’s the best, 
Chris Olsen reviews Baseball’s All-time Best Sluggers 
in Statistical µ-sings and shows the connection between 
analyzing the performance of baseball hitters and the 
performance of public schools. 

To find out more about sports statistics, visit the 
Statistics in Sports Section of the American Statistical 
Association’s web site at www.amstat.org/sections/sis. 
Below are some more great places to find sports statistics 
and data to analyze:

www.sportsstats.com
www.infoplease.com/sports.html
www.bballsports.com
www.baseball-reference.com
www.baseball-almanac.com

So, “step up to the plate” and have some fun with 
sports statistics.

    Paul J. Fields
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Paul J. Fields

EDITOR’S C   LUMN
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Does a Baseball Hitter’s 
Batting Average Measure 
Ability or Luck?

(SO) or the player puts the ball in-play (IP). When a ball 
is in-play, there can be an OUT based on a fielder’s play 
or there can be one of four base hits: single (1B), double 
(2B), triple (3B), or home run (HR). The outcomes of a 
plate appearance are shown graphically in Figure 1.

A player’s total hits (H) are the sum of 1B + 2B + 3B 
+ HR. Therefore, a player’s batting average is:

         
    

Decomposing the Batting Average
In a plate appearance, a batter’s first objective is to 

avoid striking out. The batter’s second objective is to hit 
the ball in a place that is not reachable by the fielders. 
Using this analogy, Eric Bickel, in an article in the 
Baseball Research Journal, represents the batting average 
(AVG) as:

We see from this equation that a batting average is 
dependent on two ratios: the rate of striking out (SO/AB) 
and the rate of getting a ball to fall in for a hit (H/IP). 
Bickel looked at the pattern of the strikeout rate and the 
in-play batting average throughout the history of baseball. 
He showed that the chance of getting a batted ball to 
fall in for a hit has remained fairly constant throughout 
the last 100 years. In contrast, there have been dramatic 
changes in the strikeout rate over this same period.

Ability or Luck
Jim Albert and Jay Bennett in the book Curve Ball 

consider a number of alternative measures of hitting 
performance. One general theme of Curve Ball is the 
predominant role of luck, or chance variation, in the game 

In baseball, statistics are used to evaluate the 
performance of players. When people talk about the 
best hitter in baseball, it is common to think of the 

“best” as the player possessing the highest batting average. 
Ever since the early years of professional baseball (more 
than 100 years ago), the batting average has been the 
standard measure of hitting effectiveness. For instance, if 
you click on the “Stats” link on the official Major League 
Baseball (MLB) web site, www.mlb.com, you will see 
“MLB Leaders: Hitting”—the three players with the highest 
batting averages this season—at the top of the page.

Batting Average
When a batter faces a pitcher, it is called a plate 

appearance (PA). Ignoring some rare events, such as 
sacrifices and hit-by-pitches, there are two results of a PA: 
the player gets a walk (denoted by BB for “base on balls”) 
or the player has an official at-bat (AB). When the player 
has an AB, two things can happen: the player strikes out 

Jim Albert (albert@bgnet.bgsu.edu) is Professor 
of Mathematics and Statistics at Bowling Green State 
University. His research interests are in Bayesian modeling, 
statistical education, and the application of statistics in 
sports (especially baseball). Currently, he serves as editor 
of The American Statistician. He enjoys playing tennis and 
is an avid baseball fan. He is patiently waiting for the 
Phillies to win the World Series. 

Jim Albert

PA

AB BB

SO IP

1B 2B 3B HROUT  
Figure 1. Outcomes of a player’s plate appearances
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of baseball. So, let’s take a deeper, more statistical look at 
the batting average. In particular, let’s ask: 

How useful is an observed batting average in 
describing the ability of a batter? In other words, how 
much of a batter’s batting average is determined by skill 
and how much is determined by luck?  

Generally, the variation among players’ perform-
ances based on a given statistic, say the batting average, 
is due in part to differences in players’ abilities to hit, 
with the remaining variation attributable to chance. 
One way of assessing how much ‘ability’ is contained 
in a hitting statistic is by exploring two years of hitting 
data. If a particular statistic is a good measurement of 

the ability of a player, we would expect players to have 
similar values of the statistic for two consecutive years. 
Let’s look at two hitting statistics for all players with at 
least 100 at-bats for the 2002 and 2003 seasons. In Figure 
2, we construct a scatterplot of the batting averages 
for the two seasons, and in Figure 3, we construct 
a similar scatterplot of the strikeout rates. Note there 
is a relatively weak association in the 2002 and 
2003 batting averages. In contrast, there is a much 
stronger positive association between the 2002 and 
2003 strikeout rates. This indicates the strikeout rate is 
more closely related to a batter’s ability than the player’s 
batting average. 

Figure 2. Scatterplot of the 2002 and 2003 batting averages of all players who had at least 
100 at-bats each season

Figure 3. Scatterplot of the 2002 and 2003 strikeout rate of all players who had at least 100 
at-bats each season

26376 ASA_MAG.indd   426376 ASA_MAG.indd   4 10/20/05   2:27:16 PM10/20/05   2:27:16 PM



ASA 5STATS 44  ■  FALL 2005/WINTER 2006

Data Analysis
Based on the possible outcomes of a plate appearance 

and the decomposition of the batting average, there are a 
number of hitting statistics one can compute for baseball 
players. A player can be evaluated by means of:

• Walk Rate: the ratio of walks to plate 
   appearances (BB/PA);
• Strikeout Rate: the ratio of strikeouts to at-bats 
   (SO/AB);
• Batting Average: the fraction of at-bats that are
   hits (H/AB); or
• On-base Fraction: the ratio of hits and walks to 
   plate appearances [(H + BB)/PA].

A player also can be evaluated by “in-play” statistics—
such as In-play Average, In-play Single Rate, In-play 
Doubles+Triples Rate, and In-play Home Run Rate—
found respectively by dividing the counts of hits, singles, 
etc. by the number of balls put in play.

Each of these eight hitting statistics measures a player’s 
hitting ability to some extent. But, as we have seen, some 
statistics are better measures of ability than others.

Fitting a Random Effects Model
To evaluate the usefulness of hitting statistics, we 

want to know how much of the variation in a particular 
statistic for a given season is due to ability and how much 
is due to chance. Toward this goal, we fit the following 
random effects model.

Suppose we have N players with different abilities   
and we assume these abilities p1,..., pN come from a 
probability distribution g(p) (see Figure 4). We can think 
of these abilities as the true probabilities of a successful 
outcome. For example, if we are considering batting 
average and a given player has an ability of p1, then p1 
represents Player 1’s probability of getting a base hit. 
A second player with a better hitting ability than Player 1 
would have a probability p2 that is larger than p1. Once 
the probabilities are known, the actual numbers of 
successes (say, base hits in our batting average illustration) 

y1,..., yN have binomial distributions, where yi is distributed 
binomially with sample size ni and probability of success 
pi. This is similar to the results of tossing N coins, where 
the probabilities of heads of the N coins are variable and 
come from a probability distribution g. Either getting a 
hit or not when batting is similar to getting a head or not 
when flipping coins.

For all of our batting performance measures, a batter’s 
ability will be a proportion that falls between 0 and 1. It 
is convenient to assume the ability distribution has the 
beta form:

g(p) µ pKη-1(1-p)K(1-η)-1, 0 < p < 1,
  

where η represents the mean or average ability of all 
players and K gives some indication of the spread of the 
abilities. Small values of K indicate there is a wide range of 
abilities among ballplayers, and large values of K indicate 
there are small differences in abilities. Consequently, a 
statistic with a relatively small K is a better measure of 
true ability.

We fit the above random effects model and estimate 
the quantities K and η for each of the eight hitting 
measures using data for all players in the 2003 baseball 
season with at least 100 at-bats. Table 1 displays the 
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Figure 4. Graphical representation of a random effects model. 
The batting abilities p1,...,pN come from an ability distribution, 
and given a player’s ability pi, the number of observed successes 
yi has a binomial distribution.
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estimated value of K for each of the model fits. In addition, 
this table gives the 5th, 50th, and 95th percentiles of the 
fitted ability distribution. The 50th percentile (the median) 
is an estimate of the ability for a typical player and the 
5th and 95th percentiles are useful for finding an interval 
where 90% of the player abilities fall. For the SO rate, 
we see the 5th and 95th percentiles are 0.094 and 0.278. 
Therefore, 90% of the players have ‘true’ strikeout rates 
between 9% and 28%. Figure 5 displays these ability 
distributions using error bars.

Table 1 and Figure 5 are useful in comparing the 
ability dimension of each of the eight hitting statistics. In 
fact, Table 1 and Figure 5 sort the statistics with respect to 
ability—statistics at the top are more indicative of batting 
skill and the statistics at the bottom are more reflective of 
chance variation.

At the top of Figure 5, we see there is a wide 
variation in the true strikeout rates for the players—90% 
of the players strike out between 9% and 28% of the 
time. Similarly, players seem to have varying abilities to 
hit a home run or draw a walk. In contrast, the other 
batting measures toward the bottom seem to be primarily 
chance-driven, which means that much of the variation 
in the players’ values is due to basic binomial (coin-
tossing) variation.

The most extreme measure of this type is the IP 
singles rate. Ninety percent of the true IP singles rates fall 
between .186 and .245, which is a rather short interval. 
This means it is relatively difficult for a batter to use his 
skill to aim his hits so they fall in for singles. Likewise, we 
note from Table 1 that the true IP doubles + triples rates 
and true batting averages have relatively short intervals. 
Most of the variation we see in these particular statistics 
across players is due to chance. So, it is hard to detect 
players’ batting abilities by looking at these measures.

Concluding Remarks
The batting average is difficult to interpret because 

it confounds two hitting characteristics: the propensity 
of striking out and the ability to make a batted ball fall 
in for a hit. For this reason, it is difficult to understand 
what it means for a player to possess a batting average of, 
say, .320. How much does this say about the player’s 
hitting ability?

We have that the batting average is a relatively poor 
measure of a batter’s ability and that there are superior 
measures of hitting ability, such as a player’s strikeout 
rate, in-play home run rate, and walk rate. Throughout 
one season, these measures are more ability-driven than 
the batting average.

To see a more extensive analysis of batting averages,  
read “A Batting Average: Does It Represent Ability or 
Luck?” at http://bayes.bgsu.edu.

References:
Albert, J. and Bennett (2003). Curve Ball: Baseball, 

Statistics, and the Role of Chance in the Game. 
Springer-Verlag.

Bickel, E. (2004). Why it’s so hard to hit .400. Baseball 
Research Journal, 32:15-21.  ■

0 0 .1 0 .2 0 .3 0 .4

  

  

  

  

   

  

  

  

 

90% Ability Distributions

True Rate

Ability

Luck

SO Rate

In-play HR Rate

BB Rate

On-base PCT

In-play AVG

Batting AVG

In-play 2B + 3B Rate

In-play 1B Rate

Figure 5. Graph of 5th, 50th, and 95th percentiles for fitted 
ability distributions for each batting statistic for all MLB players in 
the 2003 season

Statistic

SO rate

IP HR 
rate

BB rate

BB rate
(w/o 
Bonds)

OBP

OBP
(w/o 
Bonds)

IP AVG

AVG

IP 2+3
AVG

IP S rate

K

45

70

81

85

209

230

408

486

495

530

5th
Percen-

tile

0.094

0.012

0.042

0.040

0.278

0.280

0.288

0.235

0.055

0.186

50th
Percen-

tile

0.173

0.039

0.083

0.079

0.330

0.330

0.326

0.267

0.072

0.215

95th
Percen-

tile

0.278

0.088

0.143

0.136

0.384

0.382

0.365

0.301

0.093

0.245

Order

More
Ability

More 
Luck

Fitted Ability Distribution

Table 1. Ability distributions for fitted random effects models for 
each of eight batting statistics for all MLB players in the 2003 
season. [Note: We did two analyses for the walk data (BB)—one 
including Barry Bonds and one not including Bonds—as Bonds’ 
walk rate is much larger than the remainder of the values and his 
data have a significant influence on the fit. Likewise for the on-
base percentage (OBP) statistic.]
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Two races with split time data collection are the 
NCAA Division I Cross Country Championships and the 
New York City Marathon. Both races are run in November, 
when temperatures are bearable, if not pleasant, for long-
distance running. The NCAA meet fields some of the top 
collegiate runners from across the country. In fact, many 
non-U.S. citizens also compete in these races, as they

have gained scholarships to attend U.S. colleges. Some 
of the runners who participate in this race even go on to 
compete at the world-class level. The NYC Marathon has 
a broader range of runners, from the elite to those who 
simply hope to finish the race.

NCAA Cross Country Championship
In a recent championship, 251 men finished a 10-

kilometer race and 254 women finished a 6-kilometer 
race. Both men’s and women’s races included 31 teams 
in addition to other qualifying individuals. Times were 
recorded at the 5k, 8k, and 10k points for the men 

ASA 7STATS 44  ■  FALL 2005/WINTER 2006

Every Scatterplot Tells a Story:
a Look at the Performance of
Long-distance Runners

While the typical person is probably familiar 
with long-distance running and perhaps even 
has participated in a local 5- or 10-kilometer 

road race to support a charity, it takes a special breed 
to actually become a competitive long-distance runner. 
Although the race objective is quite simple—finish as fast 
as possible—the preparation that goes into striving for this 
goal is not simple.

There are both physical and mental 
components to training. Runners spend 
many months working out to prepare for 
key races, and mental toughness allows 
them to fight through physical discomfort 
in hard training runs or races. However, 
another key to good performance is pace strategy. That 
is, knowing how fast to start the race in order to maintain 
pace and have a strong finish.

Runners can gain psychological advantage by starting 
hard and running with other lead runners, but going out 
too hard can leave them burned out in the second half of 
the race. On the other hand, starting too slowly may leave 
a runner demoralized or spending too much energy trying 
to pass other runners during a race. Reviewing their split 
times—the time it takes a runner to complete a certain 
portion of the course—is critical for runners to know in 
order to plan for future races.

With advances in technology, many races now 
clock times at various points in the race for each 
runner in addition to the overall finish time. A common 
way this is achieved is by having each runner place 
an electronic chip on his or her shoe. Censors under 
mats at designated locations then identify the runners 
and record their times as they pass each location. 
Using these times, runners can see not only how they 
progressed throughout the race, but they can compare 
their pace performance with others.

Matthew Strand (strandm@njc.org) is a biostatistician 
working at the National Jewish Medical and Research 
Center. He also teaches at the University of Colorado Health 
Sciences Center. He is an avid long-distance runner and 
enjoys interpreting data.

Matthew Strand

A race is a work of art that people can 
look at and be affected in as many ways 
as they’re capable of understanding.

“

”
— Steve Prefontaine
    American Long-distance Running Legend
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even splits, making it easy to see the runners who slowed 
down and those who sped up in the second half of the 
race and therefore ran ‘negative splits.’

In this scatterplot, the first 5k time (x) axis runs from 
upper left to lower right. Dashed lines run perpendicular 
to x and are included to show times of equal value on 
this axis. Consequently, the dashed lines show groups 
of runners that came through the halfway point together. 
Any dashed line that is parallel to those already displayed 
also could be added to the graph to indicate constant 
halfway times. For example, a runner interested in 
seeing his or her relative location at the halfway 
point could draw a parallel dashed line over his or her 
point on the graph. Any other points on that line would 
represent the other runners around him or her at the 
halfway point. 

An advantage Figure 2 has over Figure 1 is that 
although the same data are being plotted, there is greater 
separation of points in Figure 2; hence, the location of 
individual points relative to others is easier to see. This 
is especially useful for runners who want to compare 
their performance with the performance of others. The 
greater separation of points stems from the fact that split 
difference and overall time are more weakly correlated (r 
= 0.7 and 0.6 for the men and women, respectively) than 
first-half time and second-half time (r = 0.9 for both men 
and women). 

Interpreting the Scatterplots
The similarity of trends in Figure 2 between men 

and women is quite remarkable. The majority of times 
are above the even-pace line, showing that most run 
the first half faster than the second. For the men, only 
6% (15 out of 250) of the runners ran the second half 
faster. Similarly for the women, only 7% (17 out of 254) 
ran faster in the second half. Although the differences 
in split times and overall times are correlated, this does 
not imply a causal relationship, as it is likely that those 
with greater ability set the tone for the race while many 

and at the 3k and 6k points for the women. Figure 
1 is a scatterplot of each runner’s time in the second 
half versus the first half of the race for both men and 
women. The graphs show what one might expect: 
runners who ran faster first-half splits tended also to run 
faster second-half splits.

Using Two-dimensional Scatterplots To Plot 
Three Related Variables

Although a two-dimensional scatterplot is used to 
plot two variables, any other variable that is a linear 
combination of those two also will be on that plot. Thus, 
a two-dimensional scatterplot can be used to graph 
three or more variables that span two dimensions. One 
of the keys to making a good graph is to identify the 
additional variables of interest without unnecessarily 
complicating the graph. For Figure 1, time in the first 
half (x) and time in the second half (y) can be added 
to obtain the overall time (x + y), which is represented 
by a solid line that runs 45° counterclockwise from x, as 
the two primary axes are plotted with identical scales. 
The dashed lines are used to indicate the overall time 
on the third axis.

Another variable of interest for the race data is 
the difference between first- and second-half splits 
(y – x), which is one measure of pace performance. 
This axis also lies on the plot of y versus x and runs 
45° counterclockwise from y on Figure 1. The overall 
time axis, itself, is perpendicular to the split difference 
axis and is the line y – x = 0, which indicates equal 
or ‘even’ split times. It is apparent from the graphs 
that the fastest runners had split times close to even. 
Some of the slowest finishers had some of the most 
uneven splits, as their points lie the furthest above the 
even-split line.

Figure 2 shows a graph that brings the split difference 
(y – x) into more prominent view by using it as the 
vertical axis. Overall time is placed on the horizontal 
axis. A solid line is used to indicate y – x = 0, the line of 

Figure 1. Time in the second half of the race versus time in the first half of the race for men and women in a recent NCAA Division I 
Cross Country Championship. Each circle represents a runner. The angled solid line represents the axis for overall time. The dashed 
lines indicate constant values on this axis in minutes. Points above the angled solid line are runners who ran faster in the first half of the 
race compared to the second half.
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her pace and win the race. A major pack followed 
(9:58) 10 seconds behind the leader. Some of the runners 
in this pack were ‘pulled up’ by the lead runner and 
actually sped up in the second half in an attempt to 
catch her.

Note that all of these interpretations were made 
simply by looking at the scatterplots, as the author did 
not attend the race. Even without attending the race, we 
can see what happened. The scatterplots tell the story! 
Now, let’s look at another race.

NYC Marathon
In the New York City Marathon races, there are 

typically more than 30,000 finishers each year. In two 
recent consecutive years, the times among the top runners 
were comparable, as 250th place was 2:48:25 the first 
year and 2:48:58 the next year. Table 1 shows the average 
cumulative split times for the top 250 finishers in the 
two years and, for comparison, what the splits would be 
for an even pace. As with the cross country times, these 
data exhibit faster start times, with a level of consistency 
between years that seems remarkable. Some slowing is 
noticeable in the last quarter of the race.

of the others were just trying to keep up as long as 
they could. Also, some runners with a large disparity in 
their split times (particularly for the men) still finished 
in the top 25.

The progression of the race is arguably easier to see 
in Figure 2 than in Figure 1. Runners tend to run in groups 
called ‘packs.’ The dashed lines indicate that some runners 
ran in packs for part of the race, but then dispersed 
somewhat in the second half. In Figure 2, for the men, 
the first dashed line (14:33) shows that four runners were 
together at the 5k point. Two of these runners maintained 
their pace to the end and finished together. The other two 
slowed down.

Another major pack with 13 runners (along line 14:51) 
was about 18 seconds behind the lead pack at the halfway 
point. The two runners in the lead pack who slowed 
down apparently were caught by some of the runners in 
the second pack who finished with faster overall times. 
The two runners between the first and second packs at the 
halfway point also were caught by some of the runners in 
the second pack.

For the women, it is clear that one runner was alone 
in the lead at the 3k point, and she was able to maintain 

Figure 2. Split-difference times (second-half time minus first-half time) versus overall time for men and women in a recent NCAA Division 
I Cross Country Championship. Each circle represents a runner. The solid line indicates even split times. The dashed lines indicate equal 
times at the halfway point labeled in minutes:seconds. Points above the horizontal even pace line are runners who ran faster in the first 
half of the race compared to the second half.

Table 1. Average cumulative split times for the top 250 finishers of the NYC Marathon in two consecutive years. Differences relative to the 
even pace time shown in the far right column are given in parentheses. The even pace times are based on a 2-hour and 38-minute finish, 
which was the average finish time of the top 250 runners over the two years. A negative time compared to the even pace time means the 
runners were running faster than the even pace time at that split distance. So, a negative means running ‘ahead’ of even pace.

Cumulative Split Distance

10-k
21.1-k
32.2-k
42.2-k

First-year Average 
Cumulative Split Time

0:35:52 (-1:34)
1:15:53 (-3:07)
1:58:02 (-2:32)
2:38:14 (+0:14)

Second-year Average 
Cumulative Split Time

0:35:53 (-1:33)
1:15:41 (-3:19)
1:57:36 (-2:58)
2:37:45 (-0:15)

Even Pace Time to Finish 
at 2:38

0:37:26
1:19:00
2:00:34
2:38:00
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dashed line at 1:04, and many of the following runners 
passed more of the lead runners before the finish. 

The elite runners are strongly motivated by placing for 
prize money, which may partially explain the dispersion 
among the top runners in the second half of the race in 
both years. Specifically, runners may slow down if they are 
not likely to be passed, or they fall out of contention for 
prize money and lose their incentive for a strong finish.

In Figure 3, women are shown as closed circles. 
Contrary to the men, there was a tighter lead pack for the 
women the second year than in the first. The leader for 
the women can be seen along the 1:13 dashed line. The 
mix of open and closed circles along the 1:13 dashed line 
indicates that many men ran with the elite women for at 
least part of the race.

For Runners
Graphs of split times can be informative to runners 

in helping to plan their pace strategies. There is an 
old adage, “even pace wins the race.” Figures 2 and 
3 support that assertion. However, other factors may 

Figure 3 shows split difference versus overall time for 
the top 250 finishers for each of the two races. The most 
striking feature of the two graphs is the clear separation 
of points on the left-hand side. These 15 or so runners 
primarily comprise the elite men, who are competing 
not only to win, but for prize money. Recently, the total 
purse climbed to more than $500,000, with prize money 
guaranteed to the top 10 men and women. The top five 
finishers in the first year, shown in Figure 3, had fairly 
even half splits, while in the second year, even the winner 
slowed down substantially in the second half. 

In the first year, there was a tight lead pack at the 
halfway point (1:04). These runners dispersed in the 
second half, although even the runner in this group who 
slowed down the most (12 minutes slower in the second 
half) was not caught by those behind the elite pack. The 
two runners who followed at roughly 1 hour and 8 minutes 
at the half slowed down tremendously in the second half 
and were passed by 50 or 60 runners. In the second year, 
the lead pack at the halfway point was not as tight as in 
the previous year, as seen by the greater spread along the 

Figure 3. Split difference times (second half time minus first half time) versus overall time for the top 250 finishers in two consecutive NYC 
Marathon races. Each circle represents a runner: Open = Men and Closed = Women. The solid line indicates even split times. The 
dashed lines indicate equal times at the halfway point labeled in hours:minutes. Points above the horizontal even pace line are runners 
who ran faster in the first half of the race compared to the second half.
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Researchers should not pigeonhole graphs for certain 
types of data. For example, one does not always have 
to use a line graph for repeated measures data or data 
collected over time, such as data presented in this 
article. Many graphs actually do tell stories, and one can 
actually relive events to some degree by viewing a well-
constructed graph.

Additional Reading:
Here are some references about graphs and running 

for additional reading and further study:

Gambaccini, P. and Miers, C. 1994. The New York City 
Marathon: Twenty-five Years 1969–1994. Rizzoli. 
ISBN 0-847-818152

Jordan, Tom. 1997. Pre: the Story of America’s Greatest 
Running Legend, Steve Prefontaine. 2nd edition, 
Rodale Press, Inc. ISBN 0-875-964575

Lear, Chris. 2003. Running with The Buffaloes: a Season 
Inside with Mark Wetmore, Adam Goucher, and the 
University of Colorado Men’s Cross-country Team. 
The Lyons Press. ISBN 1-585-748048

Tufte, Edward R. 2001. The Visual Display of 
Quantitative Information. 2nd edition, Graphics 
Press. ISBN 0-961-392142

Acknowledgement:
The data presented in this article were used with the 

permission of the National Collegiate Athletic Association 
(NCAA) and the New York Road Runners.  ■

affect whether a runner needs to start a little faster or 
slower. Such factors may include competitors’ tactics, 
weather conditions, course characteristics, or individual 
physiology. By examining split and finish times in relation 
to those of other runners, a runner may have a better idea 
about whether his or her pacing was reasonable in the last 
race or whether he or she should try a different approach 
for the next race.

For teams competing in cross country, coaches and 
their runners also can use graphs to plan for future races, 
where runners on the team are identified with a unique 
symbol. Coaches often encourage teammates to run 
together. The graph can show not only how closely runners 
on a team finished, but their split consistency as a group 
and how they progressed through the race together.

For Statisticians
Graphs are powerful tools that can be used to 

summarize a large amount of data into a picture. Good 
graphs can be quite simple, where one or two ideas can 
be conveyed quickly, or quite complex, where many ideas 
can be extracted with careful study. The graphs presented 
here have elements of both. 

Although scatterplots are typically two-dimensional, 
a third variable sometimes can be identified on the same 
plot, as we have done in this analysis. Such graphs should 
be distinguished from three-dimensional visual plots, 
which are plotted in two dimensions with the illusion 
that they are in three-dimensional space. These graphs 
do have an intuitive feel, but identifying where individual 
points actually lie often can be difficult. 
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An NFL Cookbook:
Quantitative Recipes for Winning

(AFC). The NFC and AFC champions meet each year 
in the Super Bowl to determine the NFL Champion. 
Data for the NFL are available on the NFL web site at 
www.nfl.com. 

We used multiple regression analysis to examine 
data from three NFL seasons spanning the years 
2002–2004. We built regression models for the NFC and 
AFC separately in order to describe the aspects of the 
game emphasized in each conference and to determine 
the recipe for success as practiced by the teams in 
each conference. The response variable was the 
number of wins each team had in the regular season. 
The predictor variables were selected to describe the 
performance of the offense, defense, and special teams 
units of each football team. Table 1 lists the predictor 
variables evaluated.

The selection criteria for including a predictor 
variable in the regression models were the F-test, 
adjusted R2, Mallows Cp, and the concept of parsimony—
simple models are preferable to complex models. Table 
2 shows the predictor variables judged to be significant 
for each model. These are the variables essential 
to winning football games during the 2002 through 
2004 seasons. We can think of Table 2 as an “NFL 
Cookbook,” with the recipes for success during the last 
three seasons. 

The 2002 NFL Season
Based on the regression models, the ‘recipe for 

success’ in the NFC during the 2002 season might be 
described as follows:

Formulate a balanced offensive attack of both 
rushing and passing plays with a low-interception 
quarterback. Make sure the offensive line focuses on the 
snap-count and is careful to avoid holding and illegal 
blocks. Add a defense that can shut-down the run, 
create turnovers, and refrain from penalties. Mix in a 
good field goal kicker and an effective punt coverage 
scheme. The result will look a lot like the Super Bowl 
Champion Tampa Bay Buccaneers.

The NFC model during the 2002 season was significant, 
as shown by an F-statistic of F10, 5 = 105.52 (p < .001) and 
adjusted R2 = .9859.

Winning is everything in the National Football 
League (NFL), and most coaches would agree 
there is not one variable that accounts for 

success. It is the combination of variables that comprise 
a winning team. For example, when baking a cake from 
scratch, you need more ingredients than just flour and 
water. A cup of brown sugar, two eggs, or a teaspoon of 
vanilla also may be needed to make a respectable cake. 
Likewise, a good football team needs a heap of team 
chemistry, a dash of good running game, two cups of 
solid defense, a teaspoon of special teams, and maybe a 
large scoop of Payton Manning.

NFL Analysis
The NFL has two conferences: the National Football 

Conference (NFC) and the American Football Conference 

Patrick Bartshe (patrick.bartshe@asu.edu) is a doctoral 
student at Arizona State University who is majoring in 
educational psychology. His interests include real estate, 
sports, and spending time with family. After graduation, 
he hopes to find his way into academia.

Patrick Bartshe

Offense

Passing Yards 
Gained

Rushing Yards 
Gained

Yards Penalized

Interceptions 
Thrown

Fumbles Lost

Defense

Passing Yards 
Allowed

Rushing Yards 
Allowed

Yards Penalized

Interceptions 
Caught

Fumbles Recovered

Sacks Made

Special Teams

Field Goals
Scored

Kick-off Return 
Average

Punt Coverage 
Average

Table 1. Predictor variables evaluated using regression analysis
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To win games according to the model for the AFC 
teams, the offense needed to hold on to the ball and avoid 
penalties, the defense needed to be effective against the 
pass and also refrain from committing penalties, and the 
special teams needed to play a solid game plan with a 
steady field goal kicker. For the AFC model, the F-statistic 
was F7, 8 = 26.98 (p < .001) and adjusted R2 = .9238.

The 2003 NFL Season
The regression model shows the successful NFC 

team had a coordinated offensive line that could give the 
quarterback time to pass to sure-handed receivers and that 
the running backs held on and protected the ball. Also, 
the defense was disciplined (did not commit penalties) 
and ready for pass or run plays. They apparently applied 
pressure on the quarterback, catching him in the backfield 
or causing him to make mistakes, such as throwing 
interceptions. Finally, the special teams were characterized 
by a solid kick-off return man who had effective blocking 
in front of him. The statistics for this model were 
F9, 6 = 36.30 (p < .001) and adjusted R2 = .9549.

In the AFC, the offense had a good pass-protection 
offensive line, sure-handed receivers, and an effective 
quarterback; the defense emphasized sacking the 
quarterback and making interceptions. This was the recipe 
used by the Super Bowl Champion New England Patriots. 
The model statistics were F3, 12 = 13.82 (p < .001) and 
adjusted R2 = .7195. 

The 2004 NFL Season
For success in the NFC in 2004, the model says teams 

had an offense with a balanced attack of running and 

passing plays, orchestrated by a patient quarterback; the 
defense was able to do everything right and was prepared 
for anything. Also, special teams emphasized the running 
aspects of their game. The statistics for this model were 
F11, 4 = 29.16 (p = .003) and adjusted R2 = .9538. 

The AFC model suggests the offensive line on 
effective teams was mindful of the snap-count and 
administered clean blocks, the defense shut down the 
run and tried to strip the ball, and the special teams 
had a good punter who could kick the ball high and 
far enough that the coverage team could minimize the 
return. The New England Patriots repeated as Super Bowl 
champions with this recipe. This model’s statistics were 
F4, 11 = 30.43 (p < .001) and adjusted R2 = .8870. 

Conclusions
This investigation was an observational study and 

gives a descriptive analysis of the data, rather than a 
prescriptive evaluation. The results help us understand 
what happened, rather than what could have happened. 
Nonetheless, the models give a perspective on what was 
required for success in each conference of the NFL during 
the last three seasons.

Although the interpretations presented here are highly 
subjective, the goal of this analysis was to get involved 
with the game quantitatively. Consequently, one major 
finding was the great fun it was to investigate this kind 
of data and to look for possible meaning in the results. It 
would be fun to test other variables and combinations of 
variables in similar models for football or other sports. Try 
it and see what you find and how much fun you have in 
the process.  ■

Table 2. Significant predictor variables for each model. Models were formulated for each conference in each session. The ± indicates 
the sign of the coefficient in the model.

Offense
+   Passing Yards Gained
+   Rushing Yards Gained
–   Yards Penalized
–   Interceptions Thrown
–   Fumbles Lost

Defense
–   Passing Yards Allowed
–   Rushing Yards Allowed
–   Yards Penalized
+   Interceptions Caught
+   Fumbles Recovered
+   Sacks Made

Special Teams
+   Field Goals Scored
+   Kick-off Return Average
_   Punt Coverage Average

NFC

X
X
X
X

X
X
X
X

X

X

AFC

X

X

X

X

X
X
X

NFC

X

X

X

X
X
X
X

X

X

AFC

X

X

X

NFC

X
X

X

X
X
X
X
X
X

X
X

AFC

X

X

X

X

2002 2003 2004
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Bo, Jo, and Mo

The three Smith brothers—Bo, Jo, and Mo—were 
highly talented baseball players. Each made it to the 
Major Leagues, although they played on different 

teams. These brothers were highly competitive, both on 
and off the field, and each enjoyed beating out the other 
two when it came to statistical measures of their baseball 
accomplishments. Though many measures exist for doing 
this, Bo, Jo, and Mo agreed that one’s batting average is 
the best indicator of player performance.

Imagine the excitement in the Smith family when it 
turned out each of the brothers had a batting average of 
exactly .300 going into the final game of the season. How 
they did in their final games would determine who would 
claim ‘bragging rights’ during the long off-season.

During their season-ending games, they each had 
five official trips to the plate. However, that was the only 
similarity among them because Bo went three-for-five, Jo 
went four-for-five, and Mo went five-for-five. In baseball 
statistics vocabulary, when a player goes “X-for-Y” it 
means the player had X hits in Y times at bat.

Which one of these three players do you think ended 
the season with the highest batting average? Do you have 
enough information to answer the question? If not, what 
information do you need?

After you have your answers, turn to Page 19 to see 
the STATS Puzzler’s answer.

A S K  S T A T S

Schuyler W. Huck

STATS
Puzzler

Schuyler W. Huck (shuck@utk.edu) teaches applied 
statistics at the University of Tennessee. He is the author 
of Reading Statistics and Research, a book that explains 
how to read, understand, and critically evaluate statistical 
information. His books and articles focus on statistical 
education, particularly the use of puzzles for increasing 
interest in and knowledge of statistical principles. 
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Is Lance Armstrong the 
Greatest Cyclist Ever? 
Data Investigations with the 
Tour de France

a faster average pace than Armstrong did to earn his last 
victory, which has spurred some to say he is the greatest 
endurance cyclist ever.

Add to this Armstrong’s personal story of winning the 
World Championship of Cycling in 1993 and then being 
stricken with cancer. He managed to climb back—not 
just to participation, but to greatness. The compelling 
tale of Armstrong will long endure, but do the data show 
his accomplishments to be special when compared to 
past champions?

First, let’s point out that the question “Who is 
the greatest ever?” is ubiquitous in sports. Who is the 
greatest home run hitter of all time—Henry Aaron, Babe 
Ruth, or Barry Bonds? Who is the greatest basketball 
player ever? Is it Michael Jordan, Shaquille O’Neal, or 
Wilt Chamberlain? How about the top golfer—Jack 
Nicklaus or Tiger Woods? Each of these sports figures 
has some unique accomplishment that can be touted as 
so extraordinary that it could earn them the title of 
greatest ever. Questions such as these often reveal 
strongly held opinions among sports fans. Statistical 
graphics can be helpful when exploring the data and 
looking for insight during these debates.

Let’s take a look at Armstrong’s accomplishments 
throughout his career in cycling. The format of the 
Tour de France has evolved somewhat over the course 
of its existence, making comparisons to the early years 
especially difficult. As grueling as the current race is 
today, the first tours featured even longer stages of more 
than 400 km, as opposed to the current tour with stages 
averaging fewer than 200 km. We therefore will confine 
our attention to what might be called the modern tour, 
beginning in 1953, when the prize money for placing 
second and third was increased, making the tour a more 
competitive event.

In this exploratory process, we can examine 
distributions, relationships, and special cases to find 
meaningful relationships in a large set of data.

Examining Distributions
The point of a bicycle race is to cover a specified 

distance in as little time as possible, so perhaps 
Armstrong’s winning times will reveal some distinguishing 

In July 2005, Lance Armstrong won the Tour de France 
for the seventh consecutive year, an unprecedented 
victory in the grueling bicycle race that dates back to 

1903. No other rider has won more than five tours, and 
no rider has maintained the consistency and durability 
Armstrong has shown. Indeed, no other rider has ridden 

Peter Flanagan-Hyde (pflanaga@pcds.org) has been 
a math teacher for 27 years, the most recent 15 in 
Phoenix, Arizona. With a BA from Williams College and 
an MA from Teachers College, Columbia University, he 
has pursued a variety of professional interests, including 
geometry, calculus, physics, and the use of technology in 
education. Flanagan-Hyde has taught AP Statistics since 
its inception in the 1996–1997 school year. 

Peter Flanagan-Hyde
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characteristics. Figure 1 is a display of the winners’ times 
with the shading indicating Armstrong.

Quite impressive! His seven winning times are all 
among the 10 fastest times ever recorded. How about the 
average pace for each of these races? This looks equally 
impressive in the second histogram (Figure 2), with Lance 
taking many of the top spots for winning pace. In fact, he 
posted the top five fastest times.

Figure 3 shows the winning margin for each of the 
tours, but in this case Armstrong’s performances do not 
stand out.

This bit of dissonance provokes some puzzlement. 
How can Armstrong ride faster than nearly any other 
winner, yet end up with relatively small margins of victory? 
Does this tell us something about his competition? How 
about the length of the race? Let us look at the distribution 

(Figure 4) of the length of each of the complete Tour de 
France.

In this graph, something that isn’t necessarily common 
knowledge becomes abundantly clear: Armstrong has 
ridden in some of the shortest modern tours. Was he just 
fortunate to have been riding in years that had shorter 
courses, or is there more to the story? Let’s see!

Examining Relationships
Is there a relationship between race length and the 

winner’s pace? There is certainly some logic in suggesting 
that shorter races should have faster average speeds—less 
fatigue perhaps. Figure 5 is a scatterplot with a least-
squares regression line fit to the data. The points that 
correspond to Armstrong are solid dots.

It is easy to see a clear, linear relationship between 
the length of the race and the winner’s pace. The points 
for Armstrong are all either above the line or on the line 
in most cases. So, Armstrong was faster than would be 
expected from the length of the race. Perhaps he was 
just good (a distinct possibility), but there might be other 
reasons why he rode faster than expected. Here is where 
the real value of our exploration begins.

What other factors might influence average pace? The 
makeup of the course (more mountains one year than the 
next, or more time trials) or the impact of the technology 

Figure 1. Distribution of winning times on the Tour de France

Figure 2. Distribution of winner’s pace on the Tour de France

Figure 3. Distribution of winning margins on the Tour de France

Figure 4. Distribution of race length on the Tour de France

Figure 5. Winner’s pace versus race length on the Tour de France
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of bicycles (lighter, more aerodynamic now) might be 
factors. No information was found about the makeup of 
the course, but as a surrogate for the factor of technology, 
the year of the tour can be used. Figures 6 and 7 show the 
winner’s pace and the length of the race by year.

In these graphs, there are clear associations between 
the year and both the winner’s pace and the length of the 
race. Since the year associates strongly with both length 
and pace, it is impossible to say which of these factors 
‘explains’ why some tours are ridden faster than others. 
Is it that some are longer, that there are better bicycles 
today, or a combination of these and other factors? We 
can’t say!

Now let us turn to a group of riders widely regarded 
as the best to have ridden on the tour: the riders who have 
won the most races. These are special cases.

Examining Special Cases
Figure 8 is a boxplot that shows the number of wins 

for each of the riders on the tour who have finished in the 
top three places (i.e., on the podium).

The riders who have won the Tour de France five 
times are Jacques Anquetil, Eddy Merckx, Bernard Hinault, 

and Miguel Indurain. These riders are marked with an “X” 
as outliers in the boxplot. The three-time winners also are 
shown as outliers with the open circles. Who is that with 
the solid circle? Armstrong with seven wins.

Many cycling enthusiasts regard Merckx as the 
most dominant rider of any era. He has a reputation for 
going all out, all the time, whereas both Armstrong 
and Indurain are known as more strategic riders who 
carefully calculate just what it takes to win. To compare 
these exceptional riders, Figure 9 presents the winning 
margins of each of their victories on the tour in 
parallel dotplots. We can see that the winning margins 
for Armstrong and Indurain are generally lower than 
for Merckx.

Are there other riders who should be considered as 
the greatest based on a combination of wins plus second- 
and third-place finishes? Figure 10 shows a distribution of 
the number of times riders have appeared on the podium. 
In this case, Armstrong’s success is not the most extreme. 
That honor belongs to Raymond Poulidor, who had three 
second-place finishes and five thirds. Armstrong’s seven 
appearances on the podium are matched by several other 
riders, including Hinault.

The last graph (Figure 11) shows a way to give more 
weight to victories by assigning points to each type of 
finish. If we assign five points for a first-place victory, 

Figure 6. Winner’s pace by year on the Tour de France

Figure 7. Race length by year on the Tour de France

0 1 2 3 4 5 6 7 8

# Wins
Figure 8. Boxplot of wins per rider on the Tour de France

Figure 9. Winning margins of riders with five or more wins on 
the Tour de France
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Figure 10. Distribution of appearances on the podium per rider 
on the Tour de France

Figure 11. Distribution of cumulative “points” on the Tour de
France

Table 1. Batting performance data for Bo, Jo, and Mo

Before the Last Game

During the Last Game

Player

Bo

Jo

Mo

Player

Bo

Jo

Mo

Hits

72

126

180

Hits

3

4

5

Official
At-Bats

240

420

600

Official
At-Bats

5

5

5

Batting
Average

.300

.300

.300

Batting
Average

.600

.800

1.000

three points for second-place, and one point for finishing 
third, Armstrong’s performance stands out distinctly from 
the rest of the riders. 

So, is he the greatest cyclist ever to have ridden 
in the Tour de France? It can be argued, on the 
strength of the graph in Figure 11, that he is certainly 
the most successful rider to ever have competed. But 
the best cyclist ever? That depends on your measure 
of ‘best,’ and it is a hard question to answer. However, 
getting at hard questions through graphical data exploration 

can be fun and engaging. So do some exploration on data 
from your favorite sport and see what you find.

Data Sources
Tour de France Web Site: http://www.letour.fr/2005/TDF/
LIVE/us/2100/index.html 

Cycling News Web Site: http://www.cyclingnews.com/
road/2005/tour05/05index.php 

Torelli Web Site: http://www.torelli.com/raceinfo/tdf/
tdfindex.shtml  ■

If you are like most people, you might have thought 
Mo (who went five-for-five in his final game) had the 
best end-of-season batting average, as he did the best 
in the last game. Surprisingly, Mo came in third place! 
Actually, it was Bo who won the family’s batting-average 
bragging rights.

To understand why Bo ended up with the highest 
batting average, we need to know the specifics of their 
batting performance during the entire season. Table 1 
provides the necessary data.

If you use these data to compute each player’s full-
season batting average (rounded to four decimal places), 
you get .3061 for Bo, .3059 for Jo, and .3058 for Mo. The 
fact that the order of these averages is exactly opposite 
the order of the averages in the final game is due to the 
different amounts of data used to compute the brothers’ 
batting averages going into the final game.

The moral of this little puzzle is to be careful when 
you try to ‘average’ averages. It is important to compute 
a weighted average of what you wish to combine. For 
example, if you want to average Bo’s performance 
in his last game with his performance in the earlier 
games, you need to compute [240 (.300) + 5 (.600)] / 
(240 + 5) = .3061. The result is a weighted average of 
the two numbers, .300 and .600, and it indicates how 
Bo did over the entire season. It would be incorrect to 
simply “average the averages” by calculating (.300 + 
.600) / 2 =.450.

Weighted averages are needed when percentages or 
proportions, each with a different ‘basis’ (denominator), 
are combined. In our example, the basis is ‘at bats.’ Failure 
to compute a weighted average can lead to silliness, such 
as thinking Bo batted .450 for the season.

STATS Puzzler’s Answers
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Polls on Steroids

let’s suppose 53% of voters would answer yes to our 
question, and the rest would answer no. That is, a little 
more than half of our population favors the idea of fining 
and expelling professional athletes who get caught using 
steroids and no one is undecided. We hope our poll 
will give an estimate near 53%—say within ± 2%—thus 
accurately revealing the majority viewpoint.

Are 25 Subjects Enough? 
Let’s begin by thinking about polls with only 25 

people. What are the chances a 25-subject poll will 
accurately reflect that more than half the population 
would answer yes? In R, we can simulate such a poll with 
one statement:

> sample(c(0,1), 25, rep=T, prob=c(.47, .53)) 

Here is how the sample function works. In its 
‘console’ window, R supplies the prompt >, and the user 
types the rest. The four items in parentheses are called 
‘arguments.’ The first argument of the sample function lists 
the possible responses, here 0 and 1. We take 0 to stand 
for no and 1 for yes. (The symbol c is used because lists 
in R usually are considered to be arranged in a column, 
even though they sometimes are printed out as a row to 
save space.) The second argument is the sample size, here 
25. With the argument rep, we say whether repetition is 
allowed. Here, the answer is T, for true. The argument 
prob lists probabilities 0.47 and 0.53 that correspond to 0 
(no) and 1 (yes), respectively.

The first time we tried it, R returned the result below, 
where the numbers in brackets give the item number of 
the first item in each row of output.

  [1] 1 0 1 1 0 0 1 0 0 1 0 0 0
[14] 0 1 0 1 0 1 1 1 0 1 1 0

We interpret this as a sequence of responses to the 
poll by 25 subjects, where 1 stands for yes and 0 for no.

         Y N Y Y N N Y N N Y N N N
  N Y N Y N Y Y Y N Y Y N

Suppose we want to conduct a poll to find out what 
people think about making laws against the use 
of performance-enhancing drugs in professional 

sports. First, we have to settle which ‘people’ we have 
in mind—our population of interest. (Do we want to 
know the opinions of everyone over a certain age? Of 
all registered voters? Just sports fans?) Then, we have to 
frame a question so the people we ask will know what 
we mean by ‘laws’ (What penalties?) and ‘drugs’ (Only 
illegal ones? All steroids?).

To be specific, let’s use the question, “Do you think 
there should be a federal law imposing a heavy fine and 
a lifetime ban from the sport on any professional athlete 
who uses steroids?” Also, let’s suppose our population of 
interest is all voters and that we will interview subjects 
selected at random from this population.

How Big a Sample Should We Take?
In this situation, how many people do we need to 

interview in order to get a sufficiently reliable reflection of 
the opinion in the population? Uneducated guesses vary 
widely. Some people think they can ask a few of their 
friends and get a good idea, and some think a pollster 
would need to ask nearly everybody in the population. 
We will see that both of these extreme views are wrong.

If you read the fine print in the report of a 
professionally conducted public opinion poll, you’ll 
probably find information about the number of people 
who were interviewed (n) and the “margin of sampling 
error” (E) of the poll. The relationship between n and E 
has a solid foundation in probability theory, based on the 
binomial and normal distributions. But here we will take 
an intuitive approach to understanding the precision of 
a poll—an approach based on some simple simulations 
with the statistical software R.

In order to illustrate how simulation works, we 
need to deal with a specific population proportion. So 

Bruce Trumbo (bruce.trumbo@csueastbay.edu) is 
Professor of Statistics and Mathematics at California State 
University, East Bay (formerly CSU Hayward). He is a 
Fellow of ASA and holder of the ASA Founder’s Award.

Bruce Trumbo
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Of our 25 simulated responses, 12 were yes. This is 
a disappointing and misleading result: The proportion of 
yes answers in the sample is p = 12/25 < 1/2, while the 
population proportion of yes answers is 53% > 1/2. 

However, this is just one way the poll might have 
turned out. To fairly judge the usefulness of 25-subject 
polls, we must look at many of them. And before we can 
do that, we need to consider how to do the looking.

The Trace of a Poll
In order to visualize what happened in a simulated 

poll, it helps to plot its trace. At each step or trial 1 
through 25, we determine the proportion of successes so 
far. This is done by summing the number of yes answers 
so far and dividing by the number of subjects interviewed 
so far. Thus, the proportion after the first trial is 1/1 = 1 
(one yes for one subject), and 1/2 = 0.5 (one yes for two 
subjects) after the second trial. You can verify easily that 
the next values are 0.33, 0.75, 0.60, and so on. 

Summarizing a trace in this way is easy to automate 
in R with the following code:

> x <- sample(c(0,1),25, rep=T, prob=c(.47,.53))
> r.tot <- cumsum(x);  Trial <- 1:25
> Proportion <- r.tot/Trial
> Proportion[25]
> cbind(Trial, x, r.tot, Proportion)[1:7,]
> plot(Trial, Proportion)

Here, x is the list of 0s and 1s, cumsum makes a 
list of running totals (1s so far), and 1:25 is a list of the 
integers 1 through 25 (subjects so far). The third line prints 
the endpoint 0.48, the fourth binds the relevant columns 
together and prints summary results for the first seven 
trials (see Figure 1). The last line makes the plot of the 
entire trace shown in Figure 2 (except for the labels).

     Trial   x  r.tot  Proportion
[1,]     1   1      1      1.000
[2,]     2   0      1      0.500
[3,]     3   1      2      0.667
[4,]     4   1      3      0.750
[5,]     5   0      3      0.600
[6,]     6   0      3      0.500
[7,]     7   1      4      0.571

Figure 1. Summary results for the first seven subjects

Because this is a simulation of a random process, the 
result will be different each time we execute the same 
commands in the R console window. In Figure 3, we 
illustrate the variability of such results by overlaying traces 
of five simulated polls. Here, it happens that three of the 
five traces end above 1/2, but two simulated polls have 
misleading endpoints below 1/2. 

More comprehensively, in Figure 4, we show the 
histogram of the endpoints of 10,000 25-subject polls. A 
normal curve centered at 53% with a standard deviation of 
10% fits the results fairly accurately. Specifically, you can 
see that on average the polls tend to give results slightly 
above 50%. However, 3,847 of these 10,000 polls (38.5%) 

Figure 2. Trace of our first simulated 25-subject poll

Figure 3. Each trace is plotted with a different style of line. Polls 
with 25 subjects can give widely varying results.

Figure 4. Sample proportions in 25-subject polls tend to lie in the 
interval 53% ± 20%
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gave misleading results below 1/2. Any way you look at 
it, 25 subjects clearly are not enough to get reliable results 
from a poll. The results are just too variable to be useful.

Using 2,500 Subjects
If we simulate polls in which the number of subjects 

is n = 2500, instead of  n = 25, we see the results are 
much more consistent. Figure 5 shows the traces of two 
simulated polls based on 2,500 subjects. In interpreting 
such random processes, we must try to distinguish the 
‘message’ from the ‘noise.’ 

In Figure 6, we overlay the traces of 20 2,500-subject 
polls. The beginning (left side) of each trace can be 
quite erratic, about as likely to be much too high as to 
be much too low (the noise). But as a typical trace gets 
to larger numbers of subjects, it starts to become stable. 
And when it reaches its endpoint, it is very likely to 
be between 51% and 55%, and almost always above 1/2 
(the message).

Figure 7 shows a magnified view of the right end 
of Figure 6. In our particular run of 20 polls, 19 ended 
between 51% and 55%. This happens to be an ‘average’ 
result: 19 out of 20 is 95%. And one can show that the 
probability is 95% the trace of a 2,500-subject poll will end 
in the interval 53% ± 2%. 

For sample sizes as large as 2,500 from a population 
with 53% in favor, the endpoint of a poll is very nearly 
the same as a random variable Y2500 that has a normal 
distribution with mean 0.53 and standard deviation 0.01. 
So P{0.51 < Y2500 < 0.55} = 95% and P{Y2500 < 1/2} = 
0.00135. Figure 8 shows a histogram of 10,000 2,500-
subject polls. Of our 10,000 simulated polls, only eight 
had endpoints below 1/2, which happens to be slightly 
fewer than the expected 13.5. Different simulation runs of 
10,000 polls would give slightly different results. But they 
consistently show that about 95% of the endpoints are in 
the interval 53% ± 2%.

You may be thinking the histograms in Figures 4 
and 8 look a lot alike. They are alike in terms of their 
approximately normal shape, and it is useful to know 
that polling distributions are often nearly normal. But the 

R and Binomial Distribution

If you know about binomial distributions, you can compute 
the exact proportion of 25-subject polls that give misleading 
tallies below 1/2. Suppose X has a binomial distribution with 
25 trials and probability 0.53 of yes on any one trial, then 
P{X  12} = 0.3808. R does such computations easily. The 
required statement is pbinom(12, 25, .53).

Figure 5. Traces of two 2,500-subject polls begin very differently, 
but have nearly equal endpoints

Figure 6. Twenty simulated polls illustrate the relatively small 
variability when 2,500 subjects are used

Figure 7. A close-up view of the right-hand side of Figure 6 shows 
19 of the 20 simulated polls ending in the interval 53% ± 2% (tick 
marks) and all ending above 50% (dotted line)
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crucial point here is that Figures 4 and 8 are plotted on 
very different scales. In Figure 9, we use the same scale 
to plot the normal curves that approximate these two 
histograms. The tall, peaked curve shows the distribution 
when the sample size is 2,500. From these results, it is 
clear that a properly conducted poll with 2,500 subjects 
would be big enough to accurately answer our question 
about voters’ opinions about a law against using steroids 
in professional sports.

Confidence Intervals
We have seen that if we repeatedly poll an imaginary 

population where we know 53% of the subjects will 
answer yes, then 95% of the polls get answers within 2% 
of the correct value. Now, taking a more practical point 
of view, suppose we sample from a population where 
the proportion in favor is unknown and we see 56% in 
favor in our sample. Then, we can be 95% sure that our 
poll result will be within 2% of the unknown population 
proportion. We conclude that the population proportion 
must lie in the interval 56% ± 2%.

 Most professional polling organizations report such 
margins of sampling error along with their published 

results. For polls with population proportions in the range 
35% to 65% and based on a simple random sample of 
n > 500 subjects, the margin of error is roughly 1/÷n.  
This rule implies that the margin of error for a poll with 
n = 1,100 is about ±3%, and for n = 2,500, the margin of 
error is about ±2%. 

These margins of error are supposed to be valid for 
95% of polls. However, they only allow for sampling 
error, which can be modeled by probability rules or can 
be simulated as we have done here. A conclusive analysis 
of such factors as nonrandom sampling, nonresponse, 
misunderstood questions, and dishonest answers is largely 
beyond the reach of probability or simulation. These 
factors may lead to an unknowable percentage of results 
that fall outside the claimed margin of error.

Figure 10 shows 95% confidence intervals for the 
simulation of 20 polls with 2,500 subjects that we 
illustrated in Figures 5 and 6. The confidence intervals are 
based on the standard formula p ± 1.96[p(1 – p)/n]1/2, 
where p denotes the sample proportion. When p is in the 
vicinity of 50%, the margin of error is about ± 2%. (For 
small n, it is best to “add two successes and two failures” 
to the counts before using this formula, but for n = 2,500, 
no adjustment is needed.)

Exploring on Your Own
Simulation should not be entirely a spectator sport! 

We hope you will try the simulations in this column 
on your own. You can get the full R code and other 
related materials on the web at www.sci.csueastbay.edu/
~btrumbo/STATSSIM or www.amstat.org/publications/
STATS/data.html. 

Here are three challenges about polling for you to try. 
Visit either of the web sites for clues to help you tackle 
these challenges. Let us know what you discover.

1. Elementary. If the population proportion in 
favor is very near 0 or 1, the “reciprocal root n” rule 

Figure 8. Sample proportions in 2,500-subject polls tend to lie in 
the interval 53% ± 2%

Figure 9. When plotted on the same scale, the normal curves 
approximating the histograms in Figures 4 and 8 show the much 
smaller variability of 2,500-subject polls

Figure 10. In this run of 20 simulated 2,500-subject polls, one 
out of 20 yielded a confidence interval that did not cover the 
population proportion in favor. The margin of sampling error for 
the confidence intervals is about 2%.
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doesn’t apply and the standard formula for confidence 
intervals may not be valid. To look at such a case, 
suppose the polling question called for a 10-year prison 
term for any professional athlete caught using steroids. 
Then, the population proportion of yes answers might be 
very low. On the assumption that 10% is in favor, make 
figures similar to some of those in this column to 
illustrate the results of simulations with n = 25 and 
1,600. Does the normal distribution provide a good fit 
when n = 25? When n = 1,600? Illustrate the margin of 
error for a poll with sample size 1,600. You can do 
this by making a few minor changes in the code 
provided online.

2. Intermediate. Of course, it is unrealistic to 
assume everyone in the population has an opinion 
about a law against steroid use in professional sports. 
Suppose the population has 53% with opinion yes 
(represented as 1), 42% no (–1), and 5% undecided (0). 
Do a simulation with n = 2,500 to illustrate the margin 
of error for the lead of yes over no—that is, the 
proportion of yes responses minus the proportion of no 
responses. Give an intuitive explanation why it’s a lot 
larger than 2%.

3. Advanced. Many people suppose that if the 
population proportion of yes answers is, say, 50%, the 
sample proportion will fluctuate continually above and 
below the 50% point as the poll progresses. But one can 
show that traces of such polls tend to be on one side of 
their 50% target value, eventually approaching the target 
without exactly touching it very often.

The average number of times the trace of a 2,500-
subject poll touches 50% is only about [2n/π]1/2  40, 
and the most likely number is 0. Suggestions on how to 
explore the approximately ‘half normal’ distribution of the 
number of ‘visits’ to 50% (and related results) are shown 
on the web sites.
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CALL FOR PAPERS
STATS: The Magazine for Students of Statistics is interested 

in publishing articles that illustrate the many uses of statistics to 
enhance our understanding of the world around us. We are looking 
for engaging topics that inform, enlighten, and motivate readers, 
such as:

• statistics in everything from sports to medicine to engineering

• “statistics in the news,” discussing current events that involve 
   statistics and statistical analyses

• statistics on the internet, covering new web sites with statistical 
   resources, such as datasets, programs, and examples

• interviews with practicing statisticians working on intriguing and 
   fascinating problems

• famous statisticians in history and the classic problems they 
   studied

• the “statistics almanac” that tells us what happened during this 

   month in statistics history

• using particular probability distributions in statistical analyses

• examinations of surprising events and questions, such as 
   “What are the chances?” 

• reviews of books about statistics that are not textbooks

• student projects using statistics to answer interesting research 
   questions in creative ways

So think of some great ideas and send a description of your 
concepts for feature articles to Paul J. Fields, editor, pjfields@byu.edu.
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ASK
STATS

and average points allowed per game during the regular 
season as the measures of offensive and defensive ability. 
Because changes in the rules and styles of play have 
affected scoring rates over the years, we’ll rank each 
team versus the other teams in the league for each year. 
We’ll give the rank of one to the team scoring the 
most points (offense) and the rank of one to the team 
allowing the fewest points (defense). These ranks are 
summarized in Table 1 (page 26).

How do the offensive and defensive ranks compare 
for the teams that won championships? In 16 of 
the 34 years, the eventual champion’s defense was 
ranked better than its offense. But in 16 years, it went 
the other way, and in two years, the rankings were 
tied. So no preference for the defense is evident in 
that comparison.

What if we figure in the magnitude of the ranks? If 
we subtract the defensive rank from the offensive rank 
(so a positive difference means a stronger defense), the 
average difference is 0.71, which is in the right direction 
to support the strong defense theory, but not at all 
significantly different from zero.

Do the rankings of the opponent in the NBA finals 
matter? Table 2 (page 26) compares the head-to-head 
offensive and defensive ranks of the participants in the 
NBA’s best-of-seven championship series. 

The team with a better defensive ranking has won 
the championship 20 times in 34 years, while the better 
offensive team has won 21 times. Note that a team has 
come into the final series with the better offensive and the 
better defensive ranking just seven times, but has won the 
championship every time. There has never been a true 
‘underdog’ with both the worse offensive and the worse 
defensive ranking that has prevailed in the final series. So 
it looks like a combination of high scoring offense and 
stingy defense is the surest way to win in the NBA. 

Want to try this for a different sport? A good source 
for data in professional football (NFL), baseball (MLB), 
basketball (NBA), and hockey (NHL) can be found at 
www.bballsports.com, which has a web interface to a 
database of historical data in each of these sports. 

Hey Coach...
Question 1: I’ve often heard the cliché “Defense 
wins championships.” Is there any statistical 
evidence to back up this claim?

 The implicit assumption in this claim is that defense 
is more important than offense in achieving the ultimate 
goal of winning a championship. The strong defense 
theory often is used to counterbalance the typical fan’s 
attraction to the flashy offensive aspects of scoring in 
sports such as baseball, football, basketball, and hockey. A 
team that trades an offensive star for a defensive player or 
adopts a more conservative offensive philosophy often is 
criticized by its fans. The standard response is that having 
a strong defense is the key to winning at playoff time 
when championships are decided. Given the multitude 
of sports data available from past seasons, it should be 
relatively straightforward to determine whether defensive 
ability tends to be a better indicator of championship 
potential than offensive ability.

To investigate this question, consider the National 
Basketball Association (NBA). Since the 1970–71 season, 
the NBA has crowned 34 champions, including the Los 
Angeles Lakers nine times, the Chicago Bulls six times, 
and the Boston Celtics five times. Let us look at each of 
the 34 championship teams and see how each team’s 
offense and defense stacked up against the other teams’ 
in the league that year. We’ll use average points scored 
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Question 2: What about a similar claim in golf 
that “you drive for show, but putt for dough”?

 This theory has a similar origin in claiming that the 
least flashy aspect of golf (rolling putts on a green) is more 
important to scoring well than the impressive full swings 
and booming 300+ yard tee shots. For a nice statistical 

analysis of this question, see Scott Berry’s A Statistician 
Reads the Sports Pages column titled “Drive for Show 
and Putt for Dough” in CHANCE magazine (Vol. 12, No. 
4, 1999). Past issues of CHANCE, published jointly by the 
American Statistical Association (ASA) and Springer, are a 
particularly good source for readable articles of interest to 
the statistically-minded sports fan (or the sports-minded 
statistics fan). 

Question 3: I know earned run average (ERA) 
is a common measure of the effectiveness of a 
baseball pitcher. I’ve developed my own statistic 
for measuring pitching effectiveness. How can I 
publicize my statistic and get others to adopt it 
or give me feedback on improving it? 

There are two good avenues. Within the ASA, there 
is a Section on Statistics in Sports (SIS) that sponsors 
several sessions at the Joint Statistical Meetings each 
summer devoted to applications of statistics in sports. SIS 
also maintains an email list for sports-related queries and 
discussions in addition to a web site (www.amstat.org/
sections/sis). If you are interested in sports, you definitely 
should join SIS.

For baseball statistics in particular, there is also 
the Society for the Advancement of Baseball Research 
(SABR). They produce various publications, sponsor 
conferences, host an e-discussion list, and maintain a 
web site (www.sabr.org) related to the field now known 
as “sabermetrics.” 

Question 4: Are there career opportunities as a 
sports statistician? 

Yes, there are positions within sports teams, leagues, 
and the sports media that involve compiling, distributing, 
and analyzing statistics. Many of these are part-time 
positions, but some can turn into a full-time career. 
Experienced sports statisticians recommend volunteering 
your time with a local team as a way to get started 
and gain experience. Additional advice can be found 
at the ASA’s Section on Statistics in Sports web site, 
www.amstat.org/sections/sis/career/index.html. 

Many thanks to Robin 
Lock for the answers to our Ask 
STATS questions. Lock is the 
Burry Professor of Statistics at St. 
Lawrence University in Canton, 
New York, and is currently the 
chair of the Section on Statistical 
Education of the American 
Statistical Association. He also has 
been involved with the Section on 
Statistics in Sports. As you can tell from his picture, Lock 
is a hockey fan—but his sports interests are vast.

Remember, this is a forum in which you may ask any 
question you have about statistics. To have your question 
answered, please email it to Jackie Miller at miller.203@
osu.edu. In the subject line, please put “Ask STATS.” In 
the body of the email, ask your question and tell us your 
school name and where it is located. Also, please let us 
know if we can use your name in the column. If we 
choose your question for publication, you will receive an 
ASA T-shirt!  ■

Robin Lock

Year Off Def Champion Opponent Off Def

2004 24   1 Detroit Pistons Los Angeles Lakers   3 14

2003 12   3 San Antonio Spurs New Jersey Nets 14   2

2002   3 10 Los Angeles Lakers New Jersey Nets 13   5

2001   3 23 Los Angeles Lakers Philadelphia 76ers 15   5

2000   6   5 Los Angeles Lakers Indiana Pacers   4 11

1999 13   3 San Antonio Spurs New York Knicks 27   4

1998   9   3 Chicago Bulls Utah Jazz   3 12

1997   1   6 Chicago Bulls Utah Jazz   2   8

1996   1   2 Chicago Bulls Seattle Supersonics   3   8

1995   8 14 Houston Rockets Orlando Magic   1 19

1994 13   5 Houston Rockets New York Knicks 21   1

1993 14   2 Chicago Bulls Phoenix Suns   1 18

1992   5   3 Chicago Bulls Portland Trail Blazers   4 12

1991   7   4 Chicago Bulls Los Angeles Lakers 13   2

1990 19   1 Detroit Pistons Portland Trail Blazers   4 19

1989 16   2 Detroit Pistons Los Angeles Lakers   5   8

1988   5 11 Los Angeles Lakers Detroit Pistons   8   3

1987   2 12 Los Angeles Lakers Boston Celtics   6   4

1986   7   5 Boston Celtics Houston Rockets   6 13

1985   2 14 Los Angeles Lakers Boston Celtics   5   5

1984   7   5 Boston Celtics Los Angeles Lakers   4 16

1983   7   7 Philadelphia 76ers Los Angeles Lakers   2 12

1982   2 15 Los Angeles Lakers Philadelphia 76ers 10   5

1981   8   2 Boston Celtics Houston Rockets 11 14

1980   2 11 Los Angeles Lakers Philadelphia 76ers   5 10

1979 19   1 Seattle Supersonics Washington Bullets   3   9

1978   7 12 Washington Bullets Seattle Supesonics 18   2

1977   3   9 Portland Trail Blazers Philadelphia 76ers   5 10

1976   7   7 Boston Celtics Phoenix Suns   9   8

1975   1 14 Golden State Washington Bullets   5   2

1974   4   7 Boston Celtics Milwaukee Bucks   7   3

1973 11   1 New York Knicks Los Angeles Lakers   4   5

1972   1   6 Los Angeles Lakers New York Knicks 14   3

1971   1   3  Milwaukee Bucks Baltimore Bullets 11   9

Table 1. Offensive and defensive ranks for the NBA finalists from 
1971 though 2004

Table 2. Comparison of offensive and defensive ranks of NBA 
finalists from 1971 through 2004 

         Better Offense

Wins Losses Total

Better 
Defense

Wins 7 13 20

Losses 14 0 14

Total 21 13
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Chris Olsen (colsen@cr.k12.ia.us) teaches mathe-
matics and statistics at George Washington High School 
in Cedar Rapids, Iowa. He has been teaching statistics in 
high school for 25 years and has taught AP statistics since 
its inception.

S T A T I S T I C A L   – S I N G Sµ

What Is a Fair Comparison? 
Lessons from Baseball for 
Public Schools

Chris Olsen

played in different parks, with different sets of teammates, 
in different eras! Crazy is what that would be! Who would 
attempt such an undergoing?

Well, as it turns out, Michael J. Schell, professor 
of biostatistics at The University of North Carolina at 
Chapel Hill attempted such an undergoing in Baseball’s 
All-time Best Sluggers: Adjusted Batting Performance 
from Strikeouts to Home Runs (BATS). 

As an on-again, off-again follower of the fortunes—
well OK, famines—of the Chicago Cubs, I cannot claim 
to be knowledgeable about our nation’s pastime. In any 
baseball discussion, I am the natural prey of anyone 
whose command of baseball fact and lore rises above 
roughly zero. I didn’t even know until recently that 
Tinker, Evers, and Chance were not the complete Cubs 
infield in their day. Fortunately for me, Schell uses 
sensible statistical analyses, artfully explained, and I only 
need to know a small amount about baseball to follow his 
arguments. Also fortunately for me, the statistical analyses 
are presented clearly with many graphic and elementary 
algebraic assists.

It cannot be claimed that all the statistical analyses in 
BATS are justified fully internally—one would have hoped 
for a bit more bibliography for the statistically semi-
literate—but each statistical technique is presented clearly 
in the text and outlined in more detail in the appendixes. 
A year, or even a semester, of background in elementary 
statistics should suffice for appreciation of the statistical 
methodology. In fact, one suspects a high school student 
with a year of AP statistics under his or her belt could 
follow the exposition relatively easily! I will present 
a bit of detail about Schell’s methods so the potential 
reader of BATS may gauge the statistical variety and level 
of the methods.

One immediately notices the kind of rational approach 
one would expect from a statistician. He identifies and 
considers a set of ‘offensive’ categories related to batting 
(e.g., triples, doubles, RBIs, etc.) and ranks each player 
according to a seven-step method.

Step 1: Establish guidelines for deciding which 
players are eligible for the single-season and career lists. 
Statistical aficionados everywhere will recognize this as 
“defining the population.”

Let me begin with some background to bring us 
all up to date. In the early 1980s, parents became 
increasingly concerned about the performance of 

their children’s schools. Subsequently, there has been 
a dramatic increase in testing required by state law 
and federal legislation in the form of the “No Child 
Left Behind” Act. The provisions of these various laws 
generally require reporting of results so the public can be 
‘informed’ about the performance of their schools.

The response by the lion’s share of educators 
has been fairly predictable. In their view, reporting 
and comparing schools based on student achievement 
is inherently unfair because of social and economic 
differences and circumstances totally beyond the teachers’ 
and administrators’ control. One might as well attempt to 
rank the best batters in baseball history, even though they 

26376 ASA_MAG.indd   2726376 ASA_MAG.indd   27 10/20/05   2:27:28 PM10/20/05   2:27:28 PM



ASA28 STATS 44  ■  FALL 2005/WINTER 2006

Step 2: Calculate the “mean-adjusted averages” using 
standardizing averages. (In this step, Schell establishes the 
prevalence of an offensive event relative to the particular 
season, thus ‘standardizing’ across seasons.)

Step 3: Obtain good estimates of the park effects for 
all offensive events and calculate “park-adjusted averages” 
for all players. What? You mean all ball parks aren’t 
created equal? The folks at Coors Field (hitter heaven) and 
Fenway Park (Jolly Green Giant) surely will be surprised 
at this piece of news! The park effect apparently is a 
significant item, and Schell uses some time-series methods 
on this one—would you believe a “Multiple Changepoint 
Regression with Backward Elimination”? I’m not sure, but 
I think Casey Stengel used that sort of method when he 
managed the New York Mets.

Steps 4 & 5: For each season, assess the performance 
spread, obtain means and standard deviations from 
transformed distributions, and stabilize them using 
five-year moving averages. As we all know, sometimes 
those distributions are peskily non-normal. And not only 
that, they vary from year to year. Here, power 
transformations and what appears to be something like 
z-scores are utilized.

Step 6: Calculate the fully adjusted average. After all 
those adjustments for years, parks, teammates, etc., we 
finally get an old-fashioned z-score!

Step 7: Adjust for late career declines.

So there you have it, as Schell says, his method “in 
a nutshell.” 

Now we get to a sticky issue: Who should read 
BATS? I’m not sure most baseball fans should pick this 
up, especially as Tinker, Evers, and Chance are ranked 
only 45th, 46th, and 53rd in their respective positions. 
However, I am sure students of statistics would learn 
a great deal about applying fairly elementary statistics 
with pleasure derived from reading an interesting and 
illuminating presentation.

Finally, I suggest those on any side of the “No 
Child Left Behind” discussion should most certainly 
read BATS. If the public is to be well-informed about 
its public schools at a level equal to Schell’s remarkable 
presentation about baseball’s best sluggers, we should be 
honest about how to make comparisons among schools 
fairly and about how to inform the public. Were that to 
happen, Schell’s most important contribution would not 
be to baseball or to statistics, but to the public good!

Reference
Schell, Michael J. 2005. Baseball’s All-time Best Sluggers: 

Adjusted Batting Performance from Strikeouts to 
Home Runs. Princeton University Press, Princeton, 
New Jersey.  ■

Statistical Computing and Statistical Graphics Sections, American Statistical Association

Student Paper Competition 2006

The Statistical Computing and Statistical Graphics 
Sections of the ASA are cosponsoring a student 
paper competition on the topics of Statistical 

Computing and Statistical Graphics. Students are encour-
aged to submit a paper in one of these areas, which 
might be original methodological research, some novel 
computing or graphical application in statistics, or any 
other suitable contribution (for example, a software-
related project). The selected winners will present their 
papers in a topic-contributed session at the 2006 Joint 
Statistical Meetings. The Sections will pay registration 
fees for the winners as well as a substantial allowance 
for transportation to the meetings and lodging (which 
in most cases covers these expenses completely). 

Anyone who is a student (graduate or undergradu-
ate) on or after September 1, 2005, is eligible to par-
ticipate. An entry must include an abstract, a six-page 
manuscript (including figures, tables, and references), 
a CV, and a letter from a faculty member familiar with 
the student’s work. The applicant must be the first 
author of the paper. The faculty letter must include 
a verification of the applicant’s student status and, 
in the case of joint authorship, should indicate what 
fraction of the contribution is attributable to the 

applicant. It is preferred that electronic submissions 
of papers be in Postscript or PDF. All materials must 
be in English.  

All application materials MUST BE RECEIVED 
by 5 p.m. EST, Monday, December 19, 2005, at the 
address below. They will be reviewed by the Student 
Paper Competition Award Committee of the Statistical 
Computing and Graphics Sections. The selection crite-
ria used by the Committee will include innovation and 
significance of the contribution. Award announcements 
will be made in late January 2006.

Additional important information on the competi-
tion can be accessed on the web site of the Statistical 
Computing Section, www.statcomputing.org. A current 
pointer to the web site is available at www.amstat.org. 
Inquiries and application materials should be emailed 
or mailed to:

 Student Paper Competition
 c/o Dr. José Pinheiro 
 Biostatistics, Novartis Pharmaceuticals 
 One Health Plaza, Room 419/2115 
 East Hanover, NJ 07936
 jose.pinheiro@novartis.com  ■
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Did you recently complete 

your statistics degree?

Postgraduate Members 
pay only $40

For the fi rst year after your graduation, you can join the ASA for only $40. That is more than 
50% off the regular ASA membership rate!

Postgraduate members receive discounts on all meetings and publications, access to job 
listings, career advice, online access to the Current Index to Statistics (CIS), and networking 
opportunities to increase their knowledge and start planning for their futures in statistics. 

To request a membership guide and an application, call 1 (888) 231-3473 or join online at

JOIN NOW!

STATS

 www.amstat.org/join.
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SHOPSHOP
ASAASA
SHOP
ASA
The ASA’s new online 
marketplace is now open at 
www.amstat.org/asastore.

Purchase T-shirts, books, 
ASA Proceedings, and gift 
items—such as the ASA 
statistical words magnet!

SAVE 10%
on your fi rst purchase by 
entering ASASTORE 
at checkout.

S
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T
S
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