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We are very excited to be the new editors of STATS, 
and we look forward to continuing the fine tradition 
established by previous editors. We especially thank 
our predecessor Jerry Keating for his years of service, 
for maintaining the high quality of the magazine, for 
inviting us to join the team of STATS editors under his 
leadership, and for all the assistance he has provided 
during the transition period. 

We remain committed to the original mission of 
STATS: to provide a first-rate publication that speaks to 
the interests and needs of students of statistics. As previ-
ous editors have done, we define “student” quite 
broadly. We include under that classification not only 
high school, undergraduate, and graduate students, but 
also teachers of statistics who never stop learning and 
finding new ways to help their students learn, and also 
professional statisticians as well. We hope that STATS 
will continue to entertain as well as to educate all of 
these groups.

In this premier issue of our editorship, the lead 
article is a very timely one. Particularly since the events 
of September 11, 2001, the need for effective security 
in situations ranging from airports to theme parks, from 
computer accounts to bank accounts, is paramount. 
The use of biometric identification devices is becoming 
more important and more common. Michael Schuck-
ers' article introduces readers to these devices and to 
some of the statistical issues that accompany their 
development and use.

A second article concerns the difficulties in obtain-
ing realistic estimates in complicated surveys. Counting 
animals may sound simple, but Willard Losinger's arti-
cle highlights some of the challenges involved and how 
a method called “raking” can help adjust estimates in a 
large-scale farm survey.

An article from the Spring 2001 issue of STATS 
described the use of randomization tests to study infant 
handling by female baboons. We are delighted that this 
article inspired Cliff Lunneborg to analyze the data fur-
ther, and we present his sensitivity analysis in this issue.

Larry Lesser, a published songwriter as well as a 
statistics educator, has penned (and performed) several 
clever and entertaining lyrics based on popular tunes 
that deal with statistical issues. Be forewarned, reader 
— you may find yourself singing those songs as you 
read them.

Three new members of our editorial board are con-
tributing the first installments of their features in this 
issue. Gretchen Davis of Santa Monica High School and 
UCLA takes over responsibility for the AP Statistics 

column that aims to provide articles of interest to stu-
dents and teachers of this course. Her feature presents 
a clever and enlightening way to think about the often 
elusive concept of degrees of freedom. Chris Olsen of 
George Washington High School in Cedar Rapids, 
Iowa, debuts a new feature called µ-sings: Statistics in 
the Media that provides recommendations and reviews 
of books, movies, and other aspects of popular culture 
that deal with statistical issues. In this issue Chris pro-
vides a very informative and entertaining review of a 
book titled The Lady Tasting Tea: How Statistics Revolu-
tionized Science in the Twentieth Century. Robin Lock of 
Saint Lawrence University also joins our editorial board 
and initiates a new feature called The Statistical Sports 
Fan, in which Robin will examine applications of statis-
tics to sports and other recreational pursuits. In this 
premier article he examines scoring and pointspread 
data from the National Football League and suggests 
how you might succeed if you participate in office 
pools. 

We would also like to take this opportunity to 
introduce the other members of our editorial board. 
Jackie Dietz of North Carolina State University contin-
ues her association with STATS, joined by Patti Collings 
of Brigham Young University and Dave Fluharty of 
Continental Teves in Auburn, Michigan.

Another new feature in this issue is Data Sleuth, in 
which we present examples of the detective work 
involved in statistics. This issue includes a contribution 
from Rick Burdick, based on a mystery that arose from 
data analysis as part of a student project. We also pro-
vide a mystery from one of our favorite datasets that we 
hope will appeal to baseball fans.

We hope that readers of STATS will enjoy this issue 
as much as we have enjoyed working with our editorial 
board and authors in putting it together. We would very 
much appreciate your feedback on this issue, your sug-
gestions for future articles and features, and especially 
your contributions. Please contact us at the e-mail 

Editors' Column

Allan RossmanBeth Chance
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A biometric device or biometric identification device 
is one that captures a physiological ‘image' and uses 
that image to permit or deny access. The access being 
controlled could be to a computer account, to a room, 
or to a theme park. The goal of these devices is to 
provide a more accurate and secure method for 
physical or logical access. Everyone has a story or has 
heard one of someone forgetting his or her password 
and not being able to ‘log in' to an account. Almost 
everyone also has a story about losing a set of keys. 
Biometric devices are meant to be an improvement 
over keys and passwords, since these latter devices 
can be lost or forgotten. In theory, your “biometric” 
cannot be lost or stolen because it is specific to you. 
Note that this is a different usage of the word 
biometrics. Biometrics, as the statistics community 
commonly uses it, refers to statistical or mathematical 
analyses of biological phenomena, as in the journal 
Biometrics.

A wide variety of biometrics are in use. A biometric 
is the physiological image that is used to determine 
identity. A partial list includes fingerprints, hand geom-
etry, finger geometry, hand vein patterns, ear geometry, 
face recognition, voice recognition, retinal scans, iris 
patterns, handwriting, keystroke dynamics, and walk-
ing gait. A more complete list can be found in, for 
example, Jain, Bolle, and Pankanti (1998). 

Since the tragic events of September 11th, biomet-
ric identification devices have received a great deal of 
attention and scrutiny. These devices potentially add an 
additional layer of security for personal identification. 
As such, they are a greatly desired commodity at this 
time. For several years the Department of Defense has 
been investing resources in testing the effectiveness of 
these devices. More recently, the Federal Aviation 
Administration and the airline industry have begun 

consideration of the use of biometric devices for 
increased travel security. Congressional hearings have 
also been held to determine the appropriate role for the 
federal government in promoting and developing the 
use of biometric devices. 

Statistics has an important role to play in the devel-
opment and evaluation of biometric devices. Each time 
a device is used, it must reach a decision about whether 
to grant or deny access to that person. Thus, there are 
two types of errors that can ensue: granting access to a 
person who does not deserve it, and denying access to 
a person who does deserve it. These are similar to Type 
I and Type II errors, and different biometric devices can 
be compared based on their error rates. Estimating 
variability in these error rates is an open statistical prob-
lem, because the assumptions of the conventional 
binomial model are satisfied only in very restrictive 
settings. Alternative methodologies have been pro-
posed, but as yet none has achieved widespread 
acceptance.

This article provides background information on 
biometric identification devices and then explores some 
of these statistical issues.

Biometric Characteristics and Subsystems
The goal of a biometric device is to accurately 
determine whether or not you are who you say you 
are. Several factors go into a ‘good' biometric device. 
Jain et al.(1998) suggest that a biometric should 
possess the following characteristics: universality, 
uniqueness, permanence, collectability, performance, 
acceptability, and circumvention. Universality means 
that as many people as possible should have the 
biometric in question. Not every person has a right 
index finger, so that a biometric device based solely 
on this will not be universal. Next, uniqueness implies 
that each person should have a different version of the 
biometric. Fingerprints are generally thought to be 
unique. Permanence is the condition that the 
biometric should not change over time. A biometric 
device based on facial recognition is not ideal in this 
sense because people change their hair, they grow 
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beards and they get wrinkles. The ease with which a 
biometric can be captured is its collectability. It might 
be possible to create a biometric device based upon 
your electroencephalogram (EEG), but it would be 
difficult to capture that information quickly and easily. 
On the other hand, a fingerprint or an iris is fairly 
exposed and, therefore, easily collectible. Performance 
measures how easy a particular biometric is to use and 
implement. Acceptability is the degree to which the 
there is public acceptance of the biometric for 
identification purposes. Fingerprints are a prime 
example of a biometric with high acceptability, since 
they have been used for centuries as a method of 
identification. Finally, circumvention is the amount of 
effort required to fool the system. Signatures are 
notoriously easy to reproduce, whereas fingerprints 
are far more difficult to copy. 

The basic biometric system contains five subsys-
tems: data collection, transmission, signal processing, a 
decision-making algorithm and a database (Wayman, 
1998). The data collection mechanism is a sensor of 
some kind. For facial recognition, the data collection 
mechanism is a camera. For keystroke dynamics, the 
data collection mechanism is a keyboard. The informa-
tion from the data collection mechanism is then 
transmitted to the signal-processing unit. As part of the 
transmission, techniques such as signal compression 
may be implemented on the presented biometric. The 
signal-processing unit then extracts the relevant details 

from the transmitted image and compares that image to 
one or more stored images, or templates, of the biomet-
ric from the database. The decision-making phase then 
decides whether or not the presented biometric is ‘close 
enough' to the stored template to be considered a 
match. Several aspects of this process, particularly the 
decision-making step, have a statistical flavor. In this 
paper, I'll focus on the statistical aspects of the perfor-
mance of the decision making process.

Matching Performance
One of the most important aspects of any biometric 
device is its matching performance. The matching 
performance is usually measured in terms of false 
accept and false reject rates. (Within the biometrics 
industry, these are sometimes referred to as the false 
match and false non-match rates, respectively (U.K. 
Biometrics Working Group, 2000)). I will refer to 
users enrolled in the database as genuine users and to 
those not enrolled in the database as imposters. Thus, 
the matching performance describes how well the 
system allows access to genuine users and denies 
access to imposters.

When an individual presents his or her biometric, 
the ‘image' is processed and matched against one or 
more stored templates from the database. The number 
of comparisons depends upon the mode that the device 
uses. There are two basic modes of operation. The first 
is verification, or one-to-one mode. In this mode, some 
identifier such as a name or an ID number is given to 
the system and it verifies that your biometric matches 
the biometrics stored under your name. The second 
mode of operation is identification, or one-to-many 
mode. Under this scenario, the biometric system com-
pares the presented biometric to the entire database 
looking for a match. Though these two modes of oper-
ation have very different methodologies, their 
performance is measured in the same way.

In either of these modes, the result of the matching 
algorithm is a match score, T. The match score is a 
measure of distance between the stored template and 
the presented biometric. Thus, low scores indicate that 
the stored and presented biometrics are similar. A com-
parison is then made between the match score T and a 
threshold, τ. If T ≤ τ, then the system decides that a 
match has been made and permits access. This is called 
an accept. If T > τ, then the system decides that a match 
has not been made and denies access. This is termed a 
reject. The statistical aspects of biometric device perfor-
mance focus on the rate at which errors are made in this 
process. These errors are akin to the Type I and Type II 
errors that are encountered in hypothesis testing. A 
Type I error is a false reject and a Type II error is a false 
accept.

Error Rates
To make this discussion more precise, consider the 
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Figure 1. A fingerprint image.

Figure 2. A fingerprint-based biometrics identification 
device.
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population of match scores for all attempts by genuine 
users, and let fgen(x) represent the density of this 
distribution. Similarly, consider the population of 
match scores for all attempts by imposters, and let 
himp(y) be the density for this distribution. Then the 
false rejection rate (FRR) is the probability that T is 
greater than τ, given that T comes from the 
distribution of genuine user scores. The false 
acceptance rate (FAR) is the probability that T is less 
than τ, given that the T comes from the distribution of 
imposter scores. Symbolically,

 
and

 

The threshold τ can be set so that we have some 
control over the values that the FAR and FRR will take. 
However, note that as τ increases FRR will decrease and 
FAR will increase. Likewise, as τ decreases FRR will 
increase and FAR will decrease. In a practical setting, 
we are often interested in estimating the FAR and FRR 
for a particular biometric device. Given τ and samples 
from both genuine users and imposters, we can create 
estimates for the FRR and FAR, in the following way:

 
and

 

where is an estimator of the FRR,  is an 
es t imator  o f  the  FAR, 

#Genuine is the total number of genuine user scores 
and #Imposter is the total number of imposter scores. 
Thus the estimated FRR is the percentage of genuine 
user scores that fall above the threshold τ. Likewise, 
the estimated FAR is the percent of imposter scores 
that fall below the threshold τ.

ROC Curves
As mentioned above, for any given τ, we can estimate 
FAR and FRR. By varying τ, we can get different 
values of FAR and FRR. Plotting the different values 
that FAR and FRR take produces a function called a 
Receiver Operating Characteristic (ROC) curve. ROC 
curves are frequently used in engineering applications. 
The ROC curve is a concise graphical summary of the 
performance of the biometric device. Figure 3 gives an 
example of an ROC curve. Note that the ROC curve 
must always begin and end with the points (0,1) and 

(1,0). This can be seen by letting τ = ∞ and τ = - ∞, 
respectively. 

One measure of overall performance that is com-
monly used for biometric devices is the equal error rate 
(EER). This is the value that the ROC curve takes when 
it passes through a line of slope 1. That is, it is the point 
where the FAR is equal to the FRR. The EER is a single 
measure to assess the overall performance of a biomet-
ric device, but biometric devices are rarely set at τ = 
EER. Rather, τ is chosen based upon the conditions 
under which the device will be used. If security is the 
most important consideration, then τ will be chosen to 
give a low FAR. If the number of people moving quickly 
through the system is an important consideration, then 
τ may be set to give a low FRR.

Confidence Intervals for FAR and FRR
To statistically assess the performance of a biometric 
device, we would like to be able to create confidence 
intervals for FRR and FAR. To do this, we need to 
describe the usual techniques for testing a biometric 
device. For simplicity suppose that we are estimating 
the FRR. Estimation of the FAR would follow by a 
similar process. Traditionally, what is done is that M 
individuals are tested for each of ni attempts, where i = 
1, 2, 3, …, M. The number of rejects from the 

 
a t t e m p t s  i s  t h e n recorded. If we let X be 
the number of false rejects from a fixed number of 
attempts, it would seem that X might be a Binomial 
random variable. However, consider the conditions 
necessary for a Binomial experiment:

i. There must be a fixed number of trials, n.

ii. Each trial must result in one of two possible 
outcomes.

iii. Probability of success, p, must be constant for all 
trials.

STATS #33  ■  WINTER 2002     5

Figure 3. Example of a Receiver Operating Characteristic 
Curve
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iv. Each trial must be statistically independent of the 
others.

If we let n = Σni, then condition i is met. Condition 
ii is clearly met since the biometric device decides to 
either accept or reject. It is known that each individual 
has his or her own probability of success and that these 
probabilities are different from individual to individual, 
so condition iii is not met when M > 1. However, if M = 
1 and the trials are independent (condition iv) then X is 
a Binomial random variable. Recall that this means that 
we would only be testing one person. Thus, the condi-
tions under which the Binomial distribution applies are 
severely limiting. 

An Alternative Model
The biometrics community recognizes that the 
Binomial distribution cannot be used to create 
confidence intervals for FAR and FRR except under 
the restrictive conditions mentioned above (U.K. 
Biometrics Working Group, 2000). At present there is 
no accepted methodology for assessing the variability 
in estimated FAR's and FRR's. One alternative to the 
Binomial that has been proposed for assessing 
biometric performance is the Beta-binomial 
distribution (Schuckers, 2001). This Beta-binomial 
model assumes that each individual i has his or her 
own probability of an error, pi. Let Xi be the number of 
failures from ni attempts. Further, let pi come from a 
population of probabilities that can be described by a 
Beta distribution. Then we have the following model:

  
for i = 1,2,3,…, M.

 
Then,

 
and 

 
T h i s  i s  a hierarchical 
model, as described in Stangl (2001). Our interest is 
now on π, the mean error rate for the population. We 
can treat the pi's as nuisance parameters and integrate 
them out:

 
Then,

 
with

 

Numerical methods, such as maximum likelihood 
estimation, are used to estimate π and to estimate the 
variability in π. See, for example, Silvey (1975) for a 
discussion of maximum likelihood methods. Under 
regularity conditions, these methods then allow for 
the creation of a confidence interval for π. 

The Beta distribution is a very flexible family of 
distributions for modeling the population of probabili-
ties. The Beta distribution works well if the population 
of pi's is unimodal, has a J-shape, or a reverse J-shape. 
(See Figure 4 for some of the various shapes that a Beta 
distribution can take.) One of the difficulties in using 
the Beta-binomial distribution is that there is a body of 
literature in the biometrics community asserting that 
the population of pi's, particularly for FRR, may be 
bimodal. For FRR, the two modes are made up of sub-
populations known as ‘goats' and ‘sheep.' Sheep are 
those individuals who have fairly low variability in their 
biometrics, whereas goats have a much higher level of 
variability in their biometrics. Hence, it seems likely 
that these two groups would constitute separate popu-
lations with different mean rates of a false reject. These 
populations were first acknowledged in a paper on 
speaker recognition that is affectionately called “Dod-
dington's Zoo” (Doddington et al., 1998). Under these 
conditions, the Beta-binomial is not an appropriate 
distribution. One possibility is to model the population 
as a mixture of two Beta-binomial distributions (Everitt 
and Hand, 1981).

Summary
In the preceding sections, I have introduced some of 
the statistical aspects of assessing the performance of 
biometric identification devices. As the need for 
security increases it is likely that the use of these 
devices will expand. Many of these are already in use. 
For example, Disney World now uses a hand 
geometry system. In a post-September 11 world, 
biometric identification devices are likely to become 
more prevalent. Statistics will continue to play a large 
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Figure 4. Beta distributions.
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role in this development.
There are several statistical issues central to biomet-

ric identification devices. Here, I have focused on the 
matching performance of these devices which is critical 
to their acceptance and their viability. Each time an 
individual presents his or her biometric, it is either 
accepted or rejected by the system. The decision to 
accept or reject is based upon a matching algorithm 
that produces a match score. If the score is below some 
threshold, the attempt is accepted. Similarly if that 
threshold is exceeded then the attempt is rejected. 
Errors in this process are classified as false accepts and 
false rejects. Estimating and making confidence inter-
vals for these rates is one of the most important issues 
in the biometrics community. Related to this is the 
pressing need to determine the sample sizes needed in 
order to create confidence intervals of a certain size. 
These and other statistical issues ensure that statisti-
cians will have a substantial impact on the future of 
biometric identification devices.

References
Doddington, G., Liggett, W., Martin, A., Przybocki, M., 

and Reynolds, D. (1998), “Sheep, Goats, Lambs 
and Wolves: A Statistical Analysis of Speaker 
Performance in the NIST 1998 Speaker Recognition 
Evaluation,” in Proceedings of 5th International 

Conference of Spoken Language Processing, ICSLP 98, 
Sydney, Australia. Paper 608 on CD-ROM.

Everitt, B.S. and Hand, D.J. (1981), Finite Mixture 
Distributions, London: Chapman and Hall.

Jain, A., Bolle, R., and Pankanti, S. (eds.) (1998),  
Biometrics: Personal Identification in Networked 
Society. Boston: Kluwer Academic Publishers.

Johnson, N. L. and Kotz, S. (1970), Continuous 
Univariate Distributions 2, New York: John Wiley 
and Sons.

Schuckers, M. E. (2001), “Using the Beta-binomial 
Distribution to Assess the Performance of a 
Biometric Device,” submitted to International 
Journal of Image and Graphics.

Silvey, S. D. (1975), Statistical Inference,  New York: 
Halsted Press.

Stangl, D. (2001), “A Primer on Hierarchical Models,” 
STATS: The Magazine for Students of Statistics, 32, 
3–9.

U.K. Biometrics Working Group (2000), “Best Practices 
in Testing and Reporting Performance of Biometric 
Devices,” on the web at www.cesg.gov.uk/ 
biometrics.

Wayman, J. L. (1998), “Technical Testing and 
Evaluation of Biometric Identification Devices,” in 
Biometrics: Personal Identification in Networked 
Society, eds. Jain et al., Boston: Kluwer Academic 

STATS #33  ■  WINTER 2002     7



ASA

The National Animal Health Monitoring System 
(NAHMS) is a relatively new program of the United 
States Department of Agriculture (USDA) (Hueston, 
1990). The first NAHMS national study was the 1990 
National Swine Survey, which provided information 
on farm biosecurity practices, facility characteristics, 
swine diseases, and routine preventive/treatment 
practices (USDA, 1992). Since then, we have generally 
done two national studies per year, revisiting a 
livestock species every five years. The 1995 National 
Swine Study concentrated on health management 
practices in the grower/finisher phase of production 
(Losinger et al., 1998). The NAHMS Swine 2000 
study was the third NAHMS national study of swine 
producers, and provided not only new information on 
swine diseases and management, but served as a basis 
for profiling changes in the swine industry (based on 
information from the previous two NAHMS surveys). 
More information on the NAHMS is available at the 
web site http://www.aphis.usda.gov/vs/ceah/cahm/.

In many U.S. livestock industries, the population of 
animals tends to be highly concentrated on a small 
percentage of the farms (Losinger, 1997). In the U.S. 
swine industry, in particular, increasing returns to scale 
have been associated with a rapidly increasing concen-
tration of pigs onto fewer, larger operations (Losinger et 
al., 1999). Some producers have farrow-to-finish oper-
ations, raising pigs from birth until they are ready for 
slaughter. Some producers specialize in the farrowing 
phase of production, sending pigs (after they are ready 
to leave their mothers) to other farms that specialize in 
fattening pigs for market. In selecting participants for 
NAHMS national studies, there is a certain trade-off 
between representing animals and representing live-
stock producers. To select farms for participation in 
NAHMS national studies, farms are generally grouped 
into strata based on farm-size (i.e., number of animals 
on the farm) within states. Larger farms (which account 
for the majority of animals) are sampled at a higher rate 

than smaller farms (which are more numerous, but 
have a much smaller fraction of the animals) (Losinger 
et al., 2000). 

Initial Sampling Weights
From the farms that participate in a survey, we 
generate estimates that apply to all of the farms and to 
all of the animals in the participating states. Since 
farms have different probabilities of selection based on 
their size, we can't just take the average value from 
among the respondents and say that this is what 
average farms do or that this is how average pigs are 
managed. Generally, each small farm in your sample 
represents a lot more farms than each large farm in the 
sample and so must be assigned a sample weight 
equal to the number of farms in the population that a 
farm in your sample represents for estimation 
purposes. Initially, this is just the inverse of the 
sampling fraction within each stratum. For example, if 
your sampling rate for a particular stratum is one in 
ten, then each sampled farm in this stratum represents 
a total of ten farms in the population (itself, plus nine 
other farms). If your sampling rate in another stratum 
is one out of two, then each sampled farm in this 
stratum represents two farms in the population. Since 
large farms have a higher sampling rate than small 
farms, large farms receive lower sample weights than 
small farms.

As a simple hypothetical example, suppose that 
Stratum A consists of 20 small farms and that two of 
them are sampled (call them A1 and A2), for a sampling 
rate of one-in-ten. Suppose further that one of these 
two farms has a sick pig. Finally, suppose that Stratum 
B consists of two large farms, that one farm is sampled 
(call it B1), and that it does have a sick pig. Thus, 
within the sample, two out of three farms (66.7%) have 
sick pigs. However, each farm sampled in Stratum A 
represents ten farms in the population, and the one 
farm sampled from Stratum B represents two farms. 
Therefore, our adjusted estimate is that 12 farms (the 
ten represented by farm A1 and the two represented by 
farm B1) of the 22 in the population (54.5%) have sick 
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pigs. Similarly, we could estimate the number of farms 
employing this or that practice (for example, using a 
particular vaccine or feed additive). 

Animal-Level Weights
In addition to learning about practices of farms, we 
also want to be able to make estimates about the 
individual animals. Examples include the number of 
sick pigs, the number of pigs that receive a particular 
vaccine or feed additive, and death rates. Animal-level 
weights are created by multiplying the farm's weight 
by the number of animals that the farmer reported, in 
order to estimate the number of animals in the 
population that the animals on a participating farm 
are representing. Continuing the above example, 
suppose that farm A1 has ten pigs, one of which is 
sick, that farm A2 has twenty pigs, none of which is 
sick, and that farm B1 has 100 pigs, 90 of which are 
sick. The two farms sampled in Stratum A would then 
have pig-level weights of 100 and 200, respectively 
(10 pigs times the ten farms represented by A1, 20 
pigs times the ten farms represented by A2). The 
sample farm from Stratum B would have a pig-level 
weight of 200 (100 pigs times the two farms 
represented by B1). Thus, we would estimate a total of 
500 pigs in the population. Applying the pig-level 
weights to the percentage of sick pigs on each 
sampled farm, we would estimate that 38% (100 × .1 
for farm A1, 200 × 0 for farm A2, and 200 × .9 for 
farm B1, divided by the total estimate of 500 pigs) are 
sick. If we had merely estimated the percentage of sick 
pigs based on the animals sampled, we would have 
calculated (1 + 0 + 90)/(10 + 20 + 100), which is 
91/130, or about 70%. This is much different from the 
previous estimate, indicating that pig-level 
adjustments are necessary to obtain a more accurate 
view of the animal populations.

Response Adjustment
In fact, even these sample weight adjustments are not 
sufficient because, when we implement a survey, we 
invariably find that not every producer is still in 
business or willing to participate in the survey when 
visited by the enumerator. Therefore, weights need to 
be transferred from sampled farms that would have 
been eligible but refused to participate in the survey, 
to farms that participated. This is accomplished by 
creating a response adjustment equal to the sum of 
weights of eligible farms divided by the sum of 
weights of respondents, generally either within the 
original sampling strata or within poststrata (i.e., 
strata defined after the data have been collected) 
(Losinger et al., 1998). Typically, if a stratum has fewer 
than 20 respondents, then farms within this stratum 
are combined with farms from another stratum (in a 
similar region or farm-size group) to form a new 

poststratum. Weights of nonrespondents are set to 
zero, and weights of respondents are multiplied by the 
response adjustment. Sometimes, low participation 
rates in a few parts of the country can have a greater 
impact on the resulting weights than the initial 
sampling rates did.

In our hypothetical example, suppose that the farm 
with ten pigs (A1) had chosen not to participate. We 
would transfer its sample weight to the participating 
farm with 20 pigs, giving the participating farm with 20 
pigs (A2) an adjusted weight of 20. Our estimate would 
then be that two (9.1%) of the 22 farms in the popula-
tion have sick pigs, and that 30% (20 x 0 + 90 x 2 = 180 
divided by 20 x 20 + 100 x 2 = 600) of pigs are sick. 

This small example illustrates that the sample 
weights can have a dramatic effect on the population 
estimates. However, we do have more information. The 
National Agricultural Statistics Service (NASS) pub-
lishes the number of operations and the number of pigs 
by state and size groups. We can use these inventory 
numbers as a way to verify our weights, by seeing if the 
resulting numbers “match.” If they do not, we can make 
further adjustments to our weights.

Inventory Adjustment
For NAHMS surveys, the traditional inventory-
adjustment method has been to force inventory 
estimates to match the NASS numbers by state and 
size groups. First, a NAHMS inventory estimate was 
computed (for each state-by-size group cell) by 
summing the animal-level weights (within each state-
by-size group cell). Then, each participant's weight 
was multiplied by the ratio of the NASS published 
inventory to the NAHMS inventory estimate by state 
and size group (Losinger et al., 1998). Then, it was 
necessary to examine the distribution of the adjusted 
weights. At this stage in particular, we had to be 
extremely wary of the impacts that the inventory 
adjustments were having on both farm-level and 
animal-level estimates. Frequently, a small number of 
respondents ended up with extremely large weights 
(after the inventory adjustment) compared to the 
majority of the respondents in the sample. If we didn't 
do anything about it, then the population estimates 
would have been heavily dependent on the responses 
given by the respondents with large weights. 
Generally, respondent weights exceeding a particular 
value were truncated to a maximum value, and their 
excess weight was redistributed among all 
respondents within their poststratum (Losinger et al., 
1998). Basically, within each poststratum, each 
participant's inventory-adjusted weight was multiplied 
by the ratio of the sum of the untruncated inventory-
adjusted weights to the sum of the truncated 
inventory-adjusted weights. Thus, even the truncated 
inventory-adjusted weights received the adjustment 
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and ended up with weights greater than the 
truncation limit. We referred to this procedure as 
“smoothing.”

To perform the inventory adjustment for the Swine 
2000 study, we decided to try an alternative weight 
adjustment method called “raking” (Deming and 
Stephan, 1940). We had 2,499 participating farms with 
100 or more pigs in the 17 states included in the study, 
with a total of 8,024,131 pigs. Table 1 shows the mar-
ginal totals for the numbers of pigs and operations that 
we sought to represent with the sample (i.e., the popu-
lation from which we were sampling). NASS provides 
the total number of operations, which often have mul-
tiple farm sites. We computed estimates for farm sites 
rather than for operations, and we use the terms “par-
ticipant” and “respondent” to refer to a participating 
farm site.

Table 2 provides some summary statistics based on 
the traditional method of adjusting weights for inven-
tory within each of the 85 state-by-size group breakouts. 
At this stage, this was the result of multiplying each 
participant's weight by the ratio of the NASS published 
inventory to the NAHMS inventory estimate within 
each of the 85 state-by-size groups. Within each state-
by-size group, the weighted total numbers of pigs 
matched the NASS numbers exactly (no surprise there), 
but the weighted number of farms was often off by 
quite a bit. Three farms (within a group that had rela-

tively low participation) wound up with extremely 
huge weights (more than 17,000—all other weights 
were less than 3,000). The next phase in the traditional 
weight adjustment method would be to “smooth” the 
more outlandish weights by truncating their weights to 
some maximum reasonable number, and then reallocat-
ing their excess weight to farms in a similar part of the 
country and in a similar size group. We always had to 
pay very close attention to what was happening with 
the weights and resulting estimates, and to make judg-
ments about various tradeoffs involved in choosing one 
cutoff versus another. Then, if estimates of the numbers 
of farms were way off, some arbitrary compromises had 
to be made between misrepresenting the number of 
farms and misrepresenting the number of animals.

With raking, we do not adjust weights for cells 
individually. Instead, first we adjust all participant 
weights to match one set of marginal totals, and then 
the other set of marginal totals. Then, we go back and 
do it again (“raking” back and forth) until we achieve 
convergence (i.e., very little change from one iteration 
to the next).

Raking Analysis
In this case, first we adjusted all weights so that the 
weighted sum of pigs would match the NASS-
published estimates by state (across all five size 
groups). Then, we adjusted the weights so that the 
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Outline of Steps in the Weight Creation Process for National Animal Health Monitoring System 
(NAHMS) data.

1. Initial sample weight: the inverse of the sampling fraction within each sampling stratum [initial sampling weight 
= 1/sampling rate]
2. Response adjustment: transfer weights from eligible non-respondents (i.e., farms that were selected in the sample 
and that would have been eligible to participate in the survey, but that refused or somehow failed to participate in the 
survey) to farms that participated in the survey [response adjustment = (sum of weights of eligible farms) / (sum of 
weights of poststratum)].
3. Inventory adjustment: force estimates of inventory (i.e., numbers of animals) to match figures published by the 
National Agricultural Statistics Service (NASS). We evaluated our traditional method and raking [inventory adjustment = 
(NASS estimate)/(NAHMS estimate) within each cell or raking between marginals].

The traditional method of performing the inventory adjustment had the following steps:
a. Compute NAHMS inventory estimates by cells based on state and size groups (using weights from Step 2 and 
inventory figures provided by participants).
b. Multiply each participant's weight by the ratio of NASS published inventory to NAHMS inventory estimates (within 
each cell).
c. Smooth excessively large weights by truncating to a maximum value, and redistributing excess weights to 
participants within the same poststratum.

Raking for inventory adjustment had the following steps:
a. Compute NAHMS inventory estimates by state (using weights from Step 2 and inventory figures provided by 
participants).
b. Multiply each participant's weight by the ratio of NASS published inventory to NAHMS inventory estimates (by 
state).
c. Use weights from step b. to compute inventory estimates by size group.
d. Multiply each participant's weight (from step b.) by the ratio of NASS published inventory to the new NAHMS 
inventory estimates (by size group).
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weighted sum of pigs would match the NASS-
published estimates by size group (across all 
seventeen states). Then, we went back and adjusted 
again by state, and then by size group, and so on, 
until we did a total of ten adjustments. Convergence 
happened pretty quickly (Table 3). We could have 
easily stopped prior to ten iterations, but went on to 
ten to see what would happen. The variability in the 
resulting weights was much less than with the 
traditional weight adjustment method; indeed, the 
maximum weight was only 232 instead of over 
26,000! The raking method corrected for the number 
of pigs and had nothing to do with the number of 
farms during the process. However, an examination of 
the state-by-size group weighted number of farms and 

pigs showed that we were reasonably close to the 
NASS-reported numbers (much better than what we 
had usually experienced with our traditional weight 
adjustment methods). Moreover, we didn't have any 
extreme weights to smooth and fuss with at all.

One pitfall with raking is that you have to pay atten-
tion to falling weights—especially weights that fall 
below one. You know that a farm in your sample rep-
resents at least itself in the population—it cannot 
represent any less than itself. Therefore, one weight that 
fell slightly below one was rounded up to one. We used 
the resulting weights to estimate numerous survey 
parameters related to swine health and management, 
and to provide information that will ultimately be used 
to improve swine production practices in the United 
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Table 1. Total number of operations and pigs (for operations with 100 or more pigs) on January 1, 2000, in the 17 states 
included in the NAHMS Swine 2000 Study.

State Number of Operations Number of Pigs
Arkansas    420    676,200
Colorado    110    885,550
Illinois  4,440  4,108,500
Indiana  3,800  3,250,500
Iowa 12,100 15,453,500
Kansas  1,000  1,376,100
Michigan    900    990,000
Minnesota  5,300  5,643,000
Missouri  2,100  3,004,250
Nebraska  3,550  2,905,750
North Carolina  1,800  9,552,000
Ohio  2,500  1,330,000
Oklahoma    300  2,255,650
Pennsylvania    950  1,013,250
South Dakota  1,800  1,205,400
Texas    100    809,100
Wisconsin  1,100    533,600

Size Group
100–499 pigs 20,490  4,314,150
500–999 pigs  8,820  5,092,700
1,000–1,999 pigs  6,205  7,206,750
2,000–4,999 pigs  4,815 12,591,850
> 5,000 pigs  1,900 25,786,900

Total 42,230 54,992,350

Source:  http://www.usda.gov/nass

Table 2. Summary of results using the traditional inventory weight adjustment method of multiplying each farm's 
unadjusted weight by the ratio of the number of pigs (reported by NASS) to the sum of the weighted number of pigs 

(i.e., the sum of the products of each farm's unadjusted weights and number of pigs) within each of the 85 state-by-size 
group poststrata.

   Mean    Minimum   Maximum

Unadjusted Weight  10.19 1.10    124.19
Adjusted Weight 171.44 1.71 26,404.84
Adjustment Factor  16.64 0.74    777.60
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States.
With raking, convergence is not necessarily guaran-

teed. It is possible that a given set of circumstances 
would lead to divergence (i.e., a bouncing back and 
forth between two or more points) rather than conver-
gence. Thus, the statistician will have to pay attention 
to what is happening from one iteration to the next.

Conclusion
Raking weight adjustments (back and forth across 
marginal totals) demonstrated superiority to our 
traditional method (of adjusting weights to match totals 
within individual cells) for performing inventory-
adjustments on our weights. Estimates of numbers of 
farms were better with raking than with our traditional 
method (which were often way off and required 
compromises between accurate estimates of numbers of 
farms and numbers of animals), and we didn't end up 
with enormous weights (due to low participation in a 
few cells) that had to be smoothed. Sometimes, our 
confidence with the results of smoothing was not high 

because of errors in judgment that might have occurred 
in deciding where to truncate and smooth. With 
raking, low participation in any particular cell is 
generally not a problem, as long as there are enough 
participants to contribute to the marginal total. With 
raking, you do have to watch out for falling weights, 
and you certainly don't want to allow any participant's 
final weight to remain below one. Whatever weight 
adjustment method is used, statisticians in this line of 
work do need to be aware of potential pitfalls, do need 
to examine distributions of weights at each stage of 
adjustment, and do need to pay close attention to 
impacts on estimates. While weight adjustment is a 
highly specialized branch of survey statistics, “raking” 
has been used for weight adjustment for over 60 years, 
and it would be fascinating to see whether raking might 
have some application to other branches of the statistics 
profession.
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Table 3. Summary of results using "raking" to adjust 
weights to match marginal totals of numbers of pigs 

by state and size group. 

   Mean    Minimum Maximum

Unadjusted Weight  10.19 1.10 124.19
Weight after:
First Adjustment  14.08 1.21 162.38
Second Adjustment  16.05 1.05 232.19
Third Adjustment  16.13 1.00 232.46
Fourth Adjustment  16.07 0.99 232.09
Fifth Adjustment  16.10 0.99 232.61
Sixth Adjustment  16.07 0.98 232.22
Seventh Adjustment  16.08 0.98 232.34
Eighth Adjustment  16.07 0.98 232.25
Ninth Adjustment  16.08 0.98 232.28
Tenth Adjustment  16.07 0.98 232.26

Weight Adjustment Factors:
First Iteration  1.37 0.59   2.08
Second Iteration  1.03 0.80   1.43
Third Iteration  1.00 0.93   1.07
Fourth Iteration  1.00 0.99   1.01
Fifth Iteration  1.00 0.99   1.01
Sixth Iteration  1.00 1.00   1.00
Seventh Iteration  1.00 1.00   1.00
Eight Iteration  1.00 1.00   1.00
Ninth Iteration  1.00 1.00   1.00
Tenth Iteration  1.00 1.00   1.00
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In the Spring 2001 issue of STATS, statistician Thomas 
Moore and anthropologist Vicki Bentley-Condit 
described the use of permutation tests to evaluate the 
hypothesis that adult female baboons tend to “handle 
the infants of females who are ranked the same as or 
lower than themselves.” Data for the analyses were 
provided by Bentley-Condit, who had observed a 
troop of Kenyan baboons, including 23 females and 
11 infants, over an 11-month period in 1991–1992. 
In this paper an alternative analysis is proposed, one 
exploring the sensitivity of their findings to the 
inclusion of individual animals.

Moore and Bentley-Condit (2001) are to be con-
gratulated for providing a careful development of 
permutation test methodology and for illustrating a 
novel application. Permutation (or randomization) tests 
deserve much greater emphasis than they are presently 
given, both in the curriculum and in practice (Lud-
brook and Dudley, 1998). The Moore and 
Bentley-Condit article certainly will aid in developing 
more interest for these techniques on the part of stu-
dents and instructors.

A caution was sounded by Moore and Bentley-Con-
dit on the interpretation of their permutation test 
results. Rightly, they noted that statistical significance 
was suspect, given that the randomness required by the 
test was not present. That is, the baboons observed 
were neither randomly sampled from some larger pop-
ulation, nor, of course, were the females randomly 
assigned ranks, nor—perhaps more relevant to the 
hypothesis evaluated here—were the exposures of 
females to infants randomly controlled by the researcher. 
Having cautioned the reader, a permutation test p-value 
of 0.0166 is reported for a test statistic, S = 472, which 
counts the excess of the number of handlings of infants 
of same or lower rank females over the number of han-
dlings of infants of higher rank females.

This certainly is not the first occasion on which a 
frequentist p-value has been assigned to an outcome in 
the absence of any randomness in the design of the 

study to which that p-value can be linked. The practice 
is endemic. Rarely is the reader warned, as Moore and 
Bentley-Condit have done, that the p-value is suspect. 
What, indeed, is to be made of a finding of statistical 
significance here, if one interprets the p-value of 0.0166 
as significantly small? We cannot conclude anything 
about the infant-handling behavior of female baboons 
not observed in this study. A population inference of 
that kind would require random sampling of baboons. 
Nor can we conclude that the relative ranks of a female 
and the mother of an infant about whom a handling 
choice was made “caused” the choice. A causal infer-
ence would be possible had an experimenter randomly 
controlled the exposures of females to infants or of 
infants to females. Absent these traditional inferences, 
what can we conclude from an “observational” p-value? 
Some would argue that a small p-value is testimony to 
the strength of an outcome, if only in a particular non-
random sample. I find that uncompelling. First, the 
p-value is no more than a monotonic transformation of 
the magnitude of the test statistic, e.g., in this study a 
larger S would have resulted in a smaller p-value. The 
p-value tells us nothing new. Second, and more import-
ant by far, the p-value is highly subject to 
over-interpretation. Readers are far too likely to attach 
traditional interpretations to the p-value than to take 
the nonrandom nature of the study into account.

Observational studies are carried out. Many of these 
studies are important scientifically. In the field, Bent-
ley-Condit could not have carried out a randomized 
experiment.  Those field observations have undoubted 
value and deserve to be reported in a manner that con-
veys their “significance.” Significance testing and related 
techniques such as the estimation of a confidence inter-
val help the researcher—and readers of that researcher's 
report—understand the magnitude of an effect observed 
in a random sample or randomized study. What might 
similarly aid researchers to understand the “signifi-
cance” of observational findings?

The finding of an observational study often takes 
the form of a summary statistic, one that aggregates 
observations across a number of  sources—clinics, lab-
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oratories, political subdivisions, schools, time periods, 
etc.—each source contributing multiple observations. 
That summary statistic, almost certainly, is interpreted 
as holding across sources. Consequently, I have argued 
(Lunneborg, 2000) that it is important to verify that the 
summary statistic in a nonrandomized study fairly 
reflects the whole of the data and, in particular, that it 
is not unduly influenced by the inclusion in the study 
of one particular source of observations. A simple tech-
nique for doing this is to form subsamples of the data, 
leaving out one source of observations at a time, and 
recompute the summary statistic on each subsample. 

The data set analyzed by Moore and Bentley-Condit 
lends itself to such a subsample analysis. Each baboon, 
whether female or infant, supplied multiple “handling” 
observations. Is the overall conclusion (that females in 
this troop tend to handle infants of the same and lower 
maternal rank) strongly dependent on the behavior of 
a particular female or infant?

Table 1 is repeated from Moore and Bentley-Condit. 
Rows correspond to infants and columns to female 
handlers. Cell entries give the number of interactions 
observed between an infant and a handler. Where the 
handler is the infant's mother, the cell entry is set to 
zero.

Rows and columns of the table have been arranged 
to correspond to the social ranks, 1: High, 2: Mid, or 3: 
Low, of handlers and of the infants' mothers. The sen-
sitivity analysis I propose carrying out may be 
particularly useful where the observational data, 
through the necessary lack of a design, are unbalanced. 
Here, for example, only one infant (KG) has a High 
maternal rank and some adult females (e.g., ST and 
WK) are observed interacting with infants much more 
frequently than are other females (e.g., LS and LY). 

Moore and Bentley-Condit overlaid a  3 x 3 grid on 
the cells of Table 1 to group together adult-infant inter-

actions by ranks of handler and infant's mother: 

a : Infant 1, Handler 1 b : Infant 1, Handler 2 c : Infant 1, Handler 3
d : Infant 2, Handler 1 e : Infant 2, Handler 2 f : Infant 2, Handler 
3
g : Infant 3, Handler 1 h : Infant 3, Handler 2 i : Infant 3, Handler 3

They then counted the number of interactions within 
each of the nine cells of this grid and combined these 
counts in a summary statistic reflecting their research 
hypothesis:

 S = a – b – c + d + e – f + g + h + i.

A positive value of S signals an excess of interactions 
of adult females with infants of the same or lower 
maternal rank over those with infants of higher 
maternal rank. The value of their comparison statistic 
was S = 472 in the direction of their research 
hypothesis.

How strongly is the magnitude of S influenced by 
individual infants or handlers? In a subsampling sensi-
tivity analysis I would withdraw one animal at a time 
and recompute this statistic. However, the magnitude 
of S is very much dependent on the total number of 
interactions. Removing any animal reduces the number 
of interactions and, consequently, could be expected to 
reduce the size of S. That would cloud the interpreta-
tion of the subsampling analysis. As a result, I propose 
first to alter slightly the definition of the summary sta-
tistic. I will divide the Moore and Bentley-Condit count 
by the total number of interactions in the table:
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Table 1. Frequency of Interactions Between Infants (rows) and Adult Females (columns)
 

  KM KN NQ PO HQ LL NY PS SK ST WK AL CO DD LS LY MH ML MM PA PH PT RS

  1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 

KG 1 0 0 4 2 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 2 1

HZ 2 13 23 7 5 0 2 1 1 5 6 18 1 6 3 0 1 4 1 0 9 0 10 1
LC 2 4 0 1 4 3 0 2 1 1 5 3 1 0 0 1 0 2 1 1 1 0 1 6
NK 2 12 4 10 5 9 1 0 2 3 11 7 8 6 3 1 0 2 1 1 5 3 3 3
PZ 2 1 3 4 1 0 0 0 0 0 0 2 0 2 0 0 0 3 0 1 1 0 3 0

CY 3 2 2 7 3 1 1 2 0 3 12 16 3 0 2 0 0 2 0 0 1 0 0 2
LZ 3 1 0 3 2 1 1 0 0 2 0 5 2 2 2 0 1 9 2 0 0 0 3 2
MQ 3 0 1 5 2 2 4 2 2 2 4 5 7 5 2 1 1 7 0 4 4 1 0 2
MW 3 3 0 7 4 2 3 0 5 2 8 13 7 14 2 0 0 0 4 0 8 0 13 6
MX 3 2 3 4 5 0 0 0 0 0 5 2 9 3 1 0 0 2 0 0 1 2 2 3
PK 3 2 0 6 4 3 4 1 0 0 15 10 8 5 1 0 3 1 1 6 3 0 7 5
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M y  S ′ i s  a 
difference in proportions: the proportion of 
interactions that are with same or lower maternal rank 
infants minus the proportion that are with higher 
maternal rank infants. This difference in proportions 
has the same permutation distribution as the 
difference in frequencies of interactions used by 
Moore and Bentley-Condit. That is, had they chosen 
to scale in the way I have, their results would have 
been unaffected. For an analysis based on all infants 
and females in this study (Table 1), the difference in 
proportions S′ takes the value 0.694. In other words, 
roughly 85% of the interactions are concordant with 
the research hypothesis and 15% are discordant. 

Figure 1 shows the difference in proportions leav-
ing out one infant at a time. These differences, plotted 
on the y-axis, range closely and more or less evenly 
about 0.694, from 0.641 to 0.766. 

This is the result to be expected if no single infant 
strongly determined the overall summary. If there were 
a strongly influential infant, the subsample differences 
would remain close to the total table difference, except 
when the influential infant's contribution was removed. 
That particular subsample difference would be mark-
edly different from those for both the total and the 
other subsamples (Lunneborg, 2000). 

Here, the biggest shifts away from the total value of 
S′ are associated with the omission of infants 2 (HZ) or 
4 (NK), the two infants most frequently handled. Nei-
ther of these shifts is large enough to change the 
conclusion about the influence of rank on infant han-
dling.

A similar picture of no strong individual influence 
emerges in Figure 2 when, one at a time, an adult 

female's interactions are removed from the table. These 
differences in proportion are, if anything, more closely 
grouped around the overall result, ranging from 0.666 
to 0.758. Withdrawal of females 10 (ST) or 11 (WK) 
appear to have the greatest impact on the value of S′. 
These females were involved in more infant handlings 
than their peers.

A difference on the order of 0.694 between the 
proportion of interactions that are concordant with the 
research hypothesis and the proportion that are discor-
dant appears to provide a fair summary for this troop of 
baboons. That summary is not strongly biased by the 
observations made on particular adult females or on 
particular infants.

Although there is no evidence of a single infant or a 
female adult unduly influencing the overall summary, 
there is something of a pattern to Figures 1 and 2. Leav-
ing out the infant of a High (or Mid) rank mother 
increases the value of S′, while leaving out the infant of 
a Low rank mother decreases S′. Similarly, dropping a 
higher ranked female decreases S′, while dropping a 
lower ranked female increases S′.

Certainly the positive value of S′ characterizes 
infant-handling behavior in this troop of baboons fairly 
and thus supports the researchers' substantive hypoth-
esis—without the need for any p-value. However, the 
exact value of the statistic would appear to be depen-
dent on the distribution of ranks among the adult 
females in the troop, as well as the distribution of 
maternal ranks of the infants. 
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Figure 1. Values of Test Statistic S′, Omitting Data for 
One Infant in Turn1,2

1.Values of S′ are given along the y-axis. 
2. x-axis identifies the omitted Table 1 row: 1 (KG) through 11 
(PK).

Figure 2. Values of the Test Statistic S', Omitting Data for 
One Adult Female in Turn1,2

1.Values of S'are given along the y-axis. 
2. x-axis identifies the omitted Table 1 column: 1 (KM) through 
23 (RS).
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On the way to writing my 1994 statistics education 
dissertation, I completed all coursework required for a 
statistics Ph.D., worked as a statistician outside 
academia, and combined backgrounds in statistics, 
mathematics and education, not unlike Miller (2000). 
I recently also integrated my songwriting background 
when I published the first juried comprehensive 
articles (Lesser 2000; Lesser 2001a) on how music 
and song can be used in the teaching of mathematics 
and statistics. The latter article uses songs from many 
genres to provide vehicles for generating descriptive 
statistics, testing hypotheses, analyzing data, and 
analyzing statistical terms and themes in song lyrics.

Now grab a guitar (do statisticians who “play a 
mean guitar” use “X-barre chords”?) or sing these new 
lyrics over vocals-removed karaoke discs or even with-
out any accompaniment:

I recently debuted (Lesser 2001b) “The Gambler,” 
which may be sung to the tune of the Don Schlitz 
song of the same title (that yielded Kenny Rogers a #1 
country hit and a TV miniseries!). My interest in 
finding creative ways to educate general audiences 
about the lottery dates back to a highly-publicized 
course I created on the psychology and probability 
underlying the then-new Texas Lottery (Elliot 1993; 
Lesser 1997).

“The Gambler”
lyrics copyright 2001 Lawrence Mark Lesser;
reprinted by permission; all rights reserved

On a warm summer's evenin', on a train bound for 
nowhere,

I met up with a gambler — we were both too tired to 
sleep.

So he told me how he planned winnin' lottery prizes
‘Til, as a math teacher, I just had to speak:

“Son, I've made a life out of readin' students' faces,
Checkin' comprehension by the way they held their eyes.
And I can see your blackboard is erased in some places—

Give me some peanuts and I'll give ya some advice.

First, your instant scratch-off tickets give 1 in 5 chances,
But that don't mean that 1 in 5 will win.
‘Cause ev'ry ticket's sep'rate, like a new flip of a coin:
It has no mem'ry how your wallet's gotten thin!

And you track those weekly draws, you say ya got a 
system—

You call some numbers “hot,” you deem others “due;”
But I insist, they each have the same chance—
If you're gonna play the game, boy, ya gotta know what's 

true!

CHORUS: You gotta know when you pick ‘em,  
what's superstition,

And where strategy is there to be had,
Or you'll learn why lotteries seem like
Tax on folks who don't know much math!

Now all sets of numbers are equally unlikely,
More rare than death by lightning, still there's somethin' 

you should know:
If you should happen to win that big jackpot,
You'll win more money if you picked it all alone!

So avoid those numbers that more folks are playin':
Like sevens and birthdays and sequences, too.
‘Til this song gets famous, you'll have the advantage—
Maybe you'll thank me with a share of your loot!” 
(Repeat Chorus)

My fascination with the “birthday problem” (Lesser 
1999) inspired this next ditty (Lesser 2001b). The 
lyric contrasts the often-confused events of “some 
people matching” and “someone matches with ME” 
and may be sung to the tune of Mildred J. Hill and 
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Patty Smith Hill's “Happy Birthday to You”:

“Birthday Song”
lyrics copyright 2001 Lawrence Mark Lesser;
reprinted by permission; all rights reserved

Happy birthday to you —
Bring another 22:
Then we'll have even chances
Of a match in this room.....
Or many more!

Happy birthday to me —
Bring another two-fifty-three:
Then I'll have even chances
Someone matches with ME.....
Or many more!

As the staff statistician for the Texas Legislative 
Council during its redistricting project in 1990–91, I 
utilized Census data and gained experience to appreci-
ate some of the issues raised over the last several years 
in discussions about statistical adjustment for under-
count. As Moore (1998, p. 10) relates, “On August 24, 
1998, a federal court panel ruled that the use of statis-
tical sampling for Congressional apportionment violates 
the Census Act. It is important to note that statistical 
and scientific issues played no role in the decision.” The 
lyric at the end of Lesser (2001a) concisely articulates 
the controversy and may be sung to the tune of John 
Denver's #1 hit “Annie's Song”:

“Taking Leave of Our Census”
lyrics copyright 1998 Lawrence Mark Lesser;
reprinted by permission; all rights reserved

You fill out the Census
Once ev'ry decade.
It's quite a sample;
It tries to count all!
It can't help but miss some,
Some more than others—
But can we adjust it
And follow the law?

If that “census” pun wasn't too much, you may get 
your fill of puns in this statistician's “breakup” song, 
which I sing as a standard 12-bar blues, with the words 
in parentheses spoken (rather than sung) during the 
final 2 bars (measures) of each group of 12.

“Statistician's BLUEs”
lyrics copyright 1994, 2001 Lawrence Mark Lesser;
reprinted by permission; all rights reserved

I've been mean-in' to tell ya ‘bout my last co-relation,
I've been median to tell ya ‘bout my last co-relation:
She wasn't from Haiti, but she was variation!

(unexplained and uncontrolled!)

I saw her with ANOVA man, and they were not discrete,
I saw her with ANOVA man, and they were not discrete—
I went proba-ballistic and let out a Pearson scream!
(those deviates!)

Told her, “If you're gamma data me, mu beta change your 
mode.

If you gamma data me, mu beta change your mode.
Chi-square you'll be inference, if you random that road!
(you'll be skewed!)”

Called up my dad: “Hi Pa! This is testing my heart!”
Yeah I told my dad: “Hypothesis testing my heart!”
He said, “What's your expectation? Ya met her at an X-bar.”
(“You're right, Dad! Simulator!”)

She was my significant other — significant at point-oh-three,
She was my significant other — significant at point-oh-three,
But alpha get her soon — as sample as can be!
(That'll Fisher! Time serious!)
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When we hear “degrees of freedom,” do we think of a 
popular folk song from the 60's, a self-help book for 
the recently divorced, a sailboat moored in the 
marina, the different ways that a given molecule can 
change its energy, or the number of independent 
components minus the number of estimated 
parameters?

Introduction
Students in AP Statistics may be perplexed when the 
concept of degrees of freedom is introduced as the 
denominator in the calculation of the sample variance. 
It may be helpful to link what students already know 
about dimension and coordinate geometry to what 
they are learning about estimating parameters using 
statistical samples. This approach was suggested in the 
first section of the classic four-part article written by 
Helen Walker and published in the Journal of 
Educational Psychology in 1940.

Dimension and Motion
Imagine a pesky fly moving freely in three-
dimensional space. If we restrict its path to a tabletop, 
then we reduce its freedom of flight to a two-
dimensional path. And if we confine the fly to walking 
on a wire, its freedom of movement is reduced to a 
one-dimensional path.

Locus and Coordinate Geometry
We consider the locus or path of ordered points (x, y) 
in the xy plane, where the point is free to move 
anywhere in two-dimensional space. When we add 
the restriction that the sum of its coordinates is seven 
(x + y = 7), we reduce the locus to a line. If we have 
two simultaneous restrictions that the sum of the 
coordinates is seven and the difference is three (x + y = 
7 and x – y = 3), we reduce the locus to a single point 
(5,2), which is the intersection of the two lines.

Expanding the discussion to ordered triples (x, y, z) 

in three-dimensional space, the point is free to move 
anywhere in the space. When we add the restriction 
that the sum is seven (x + y + z = 7), we are now on a 
two-dimensional plane within the space. If we have the 
two restrictions (x + y + z = 7 and x + y – z = 3), the 
locus is reduced to a line. Finally, imposing the simul-
taneous constraints (x + y + z = 7 and x + y – z = 3 and 
x – y – z = 1) reduces the possible common solutions to 
a single point (4, 1, 2).

Walker generalized the analogy to ordered n-tuples 
in n-dimensional space. We reduce the dimension of 
our locus by one, each time we impose a restriction. If 
r conditions or restrictions are imposed, our dimension 
is reduced from n to n-r.

Connections to Statistical Samples
Students should be familiar with dimension, locus, 
and coordinate geometry from their earlier studies. 
How do these concepts connect to statistics?

Specifically, how are the degrees of freedom related 
to why we divide by n-1 in calculating a sample vari-
ance or standard deviation? When we measure n items 
in a sample from a population of interest, the n items 
are free to take on any values and can be anywhere in 
the n-dimensional plane. Variance measures the disper-
sion of these values from the mean. To calculate the 
sample variance, we must first estimate the population 
mean with the sample mean. This imposes a restriction 
that the items in the sample can take any values as long 
as their sum divided by n equals the value of the sample 
mean. This restriction reduces the dimension of the 
space in which the items can vary from n to n – 1. Thus, 
we estimate one parameter from our sample and lose 
one degree of freedom. Similarly, when we consider the 
least squares regression line, we need to estimate two 
parameters, the slope and the intercept. The equations 
for the sample slope and the sample intercept impose 
two restrictions on the data values, and we lose two 
degrees of freedom.
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Connections to Two-Way Tables

For a two-way, or contingency, table of r rows and c 
columns, the same principle holds. Consider Table 1 
with 3 rows and 5 columns. The row and column 
totals in this table are represented by n1 through n8, 
and Sum = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8.

If we start placing values in the first row, we obtain 
Table 2. Since the sum of the first row is n1, we can 
consider the first four values as free (denoted by f1 
through f4), but then the last value is determined 
(denoted by x1).

Similarly, in the second row, four of the values are 
free and the last is determined (see Table 3). By the time 
we get to the third row, those values are all determined 
in order to obtain the correct column totals (see Table 
4).

In the entire table, seven of the cells are determined 
by the other cells, leaving eight of the cells (denoted by 

f1 through f8) free to vary. Thus, the degrees of freedom 

for a 3 by 5 table is 8. In general, for a table with r rows 
and c columns, we lose c degrees of freedom because 
the cells in the last row are determined by the entries in 
the other r – 1 rows, and we lose r – 1 degrees of free-
dom because the cell in the last column of each row is 
determined by the previous values in that row. There-
fore, of the rc cells in the table, rc – c – (r – 1) = (r – 1)
(c – 1) are free to vary.

Conclusions
For AP Statistics students, it may help to illustrate 
degrees of freedom by the analogy between 
restrictions of physical motion of a point in space and 
the loss of degrees of freedom. In general, each time 
we impose a restriction (estimate an unknown 
parameter from our known sample data), we lose one 
degree of freedom.

Table 1.

 Column D Column E Column F Column G Column H Row Total

Row A      n1

Row B      n2

Row C      n3

Col Total n4 n5 n6 n7 n8 Sum

Table 2.

 Column D Column E Column F Column G Column H Row Total

Row A f1 f2 f3 f4 x1 n1

Row B       n2

Row C       n3

Col Total n4 n5 n6 n7 n8 Sum

Table 3.

 Column D Column E Column F Column G Column H Row Total

Row A f1 f2 f3 f4 x1 n1

Row B f5 f6 f7 f8 x2 n2

Row C      n3

Col Total n4 n5 n6 n7 n8 Sum

Table 4. 

 Column D Column E Column F Column G Column H Row Total

Row A f1 f2 f3 f4 x1 n1

Row B f5 f6 f7 f8 x2 n2

Row C x3 x4 x5 x6 x7 n3

Col Total n4 n5 n6 n7 n8 Sum
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Further Readings

The Walker article continues to discuss topics which 
are beyond the scope of AP Statistics but which may 
be of interest to continuing students and teachers: the 
representation of a statistical sample by points in 
n-dimensional space, the importance of the concept of 
degrees of freedom, and illustrations of how to 
determine the number of degrees of freedom 
appropriate in certain common situations.

Reference
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Educational Psychology, 31, 252–269. Reprinted in 
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This feature invites you to solve mysteries involving 
data. We hope that you will find this feature to be fun 
and enlightening, and we encourage you to send us 
your own submissions of data mysteries.

Mystery 1: The Yolk's on You!
Contributed by Rick Burdick, Arizona State University

Students in my quality analysis course at Arizona State 
University conducted a project to study variability in 
the weights of eggs purchased in local supermarkets. 
The study compared grade AA large eggs with grade 
AA extra large eggs for two store brands (Fry's and 
Abco) and one premium brand (Hickman's). The eggs 
were all purchased on April 4th, 1999 and weighed (in 
grams) on electronic scales made available to the 
students by the chemistry department. After weighing 
all the eggs (one dozen for each combination), the 
students prepared the table of group means and the 
interaction plot shown below:

Table 1. Average Weights (in grams)

 Fry's Abco Hickman's
Large 64.21 58.01 59.47
Extra Large 63.46 62.79 64.13

Figure 1. Interaction Plot of Treatment Means

Question 1: Which store's egg weights seem to follow 
a different pattern than the other two stores?

Question 2: Which size (large or extra large) seems to 
have the anomalous weight for that store?

Question 3: Based on the information provided, 
suggest a plausible explanation to resolve this 
mystery.

(The solution appears on page 24.)

Mystery 2: Buy Me Some Peanuts and 
Cracker Jacks!
Contributed by Beth Chance and Allan Rossman

The Team Marketing Report newsletter annually reports 
on the average cost of a family of four attending a 
Major League Baseball game. This report calculates a 
“fan cost index” by examining prices of parking, soda, 
beer, hot dogs, programs, and caps, in addition to the 
costs of adult and child tickets. The stem-and-leaf 
plots below present the distribution of prices for the 
30 Major League teams in the 2000 season on the 
program, cap, and parking variables:

Stem-and-leaf of Program  N = 30
Leaf Unit = 0.10

2   0  
2   5  
3   000000233  
3   
4   000000000000  
4   
5   000000  
5   
6   0    

Data Sleuth
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Stem-and-leaf of Cap    N = 30
Leaf Unit = 0.10

7     6  
8     0  
9     009  
10   0000000002  
11   
12   000000000000  
13   0  
14   0  
15   0  
  
Stem-and-leaf of Parking  N = 30
Leaf Unit = 0.10

4     0  
5     000000  
6     00000056  
7     00059  
8     00000  
9   
10   00  
11    0  
12   0  

Question 1: What value does the leaf unit have for the 
large majority of these cases? Explain why that 
makes sense.

Question 2: For the leaves with different values than 
the answer to #1, some of them equal 2 and some 
equal 5. Explain why this also makes sense.

Question 3: Eliminating the answers to 1 and 2 leaves 
(ooops, pardon the pun!) the following the leaf 
values: 3 and 3 for program, 6 and 9 for cap, 6 
and 9 for parking. Come up with a plausible 
explanation for why there are two teams with such 
odd leaf values for every variable, and identify 
which two teams they are.

(The solution appears on page 24.)

If you want to explore these data further, you can 
find them at www.amstat.org/publications/stats.
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It is only with a refined sense of presumption that a 
member of one generation would take up the task of 
recommending reading material to the next – well, 
OK, maybe the next next — generation of statistics 
students. As I write, the Harry Potter movie is out, 
and only today have I purchased the first Harry Potter 
book. Clearly my usual choice of reading material is 
out of touch with the current scene. However, I feel 
particularly confident recommending The Lady Tasting 
Tea: How Statistics Revolutionized Science in the Twentieth 
Century, by David Salsburg, as a terrific read for all 
students of statistics. I feel particularly confident not 
because I am a statistics teacher, but because I am an 
experienced parent, a true believer in the mythology 
of parenthood, and, of course, familiar with The 
Speech.

As today's students know from their parents' rendi-
tion of The Speech, their parents lived in a terribly 
frightful world. Unlike today's soft generation, all par-
ents had to walk to school; frequently uphill both ways, 
through rain, sleet, or hail, and didn't have modern 
conveniences like TV's, CD's, and calculators. And the 
worst part was trying to read about the history of math-
ematics! Young math majors, interested in their field of 
study, would quite naturally pick up histories of math-
ematics. These histories were abundantly supplied not 
merely with equations, but with equations beyond 
mortal comprehension. Following the story line was 
not unlike taking another math class! Today the situa-
tion is different. Not only is The Lady Tasting Tea a 
thoroughly delightful read, providing a fascinating 
escape into the recent history of statistics, there is not 
equation one in the whole book! (In the interest of 
avoiding The Speech, do not share this book with your 

parents.)
The book's title harkens back to one of the legend-

ary incidents in the history of statistics. At a party in 
Cambridge in the late 1920's a lady claimed that she 
could tell by taste whether tea had been added to milk, 
or milk added to tea during the preparation of the 
drink. The university dons in attendance were some-
what skeptical of this ability, and a healthy discussion 
ensued. Who should pop up but R. A. Fisher, the father 
of modern statistics? Never one to pass up a chance to 
educate any crowd about statistics, he proposes a test to 
see if her claim can be verified using his theory of ran-
domized experiments.

In the Lady Tasting Tea, David Salsburg is equally 
reluctant to pass up a chance to educate and regale 
readers with descriptions of the people and the person-
alities that shaped the direction of twentieth century 
statistics. Fisher, of course, is a major protagonist, and 
the statistical work of Karl Pearson, William Gossett, 
and Fisher is coherently and deftly interwoven with the 
story of their early disagreements. Did I say disagree-
ments? What I meant was, serious arguments! Fisher 
argued with everybody and took no rhetorical prison-
ers. One of the most charming anecdotes in the book 
recalls a paper delivered by the eminent statistician 
Jerzy Neyman in French in the 1950's. As he went to 
the podium, Neyman realized that Fisher was in the 
audience, and during his presentation he steeled him-
self for the inevitable Fisherian pounce during questions 
from the audience. After the presentation, Salsburg 
writes, “… Fisher never stirred, never said a word. 
Later, Neyman discovered that Fisher could not speak 
French.”

Women do not only appear in the title. Florence 
Nightingale (F. N.) David, daredevil on cross-country 
motorcycle races and author of multiple books, is 
shown to be a feisty pioneer in statistics. Her self-de-
scribed “worm's-eye view” of the early statisticians, as 
well as the discussion of her own war work during the 
German blitz of London, is fascinating reading. And 
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ASA

then there is Gertrude Cox, assistant to George Snede-
cor. Snedecor, founder of the Statistical Laboratory at 
Iowa State University, was asked to recommend some-
one to head up a similar laboratory at North Carolina 
State University. Could he recommend a man to head 
such a department? Snedecor could. He made a list of 
ten men, and called Cox in to verify the list. She looked 
it over, and asked, “What about me?” Snedecor added a 
line to his letter: “These are the ten best men I can think 
of. But, if you want the best person, I would recom-
mend Gertrude Cox.” As Salsburg writes, “Since the 
days of Snedecor and Cox, the ‘best person' has fre-
quently been a woman.”

So let's make a cross-generational deal, you and I. 
This weekend I will curl up with the Sorcerer's Stone; 
you curl up with The Lady Tasting Tea. We will each 
discover anew the pure joy of reading a well-crafted 
book. If you are already an accomplished student of 
statistics, this book will bring a new appreciation of the 
subject and an almost personal acquaintance with the 
men and women who were, as it were, present at the 
creation of statistics. If you are a beginning student of 
statistics, the Lady will deliver not only the personalities 
but also an account of the interesting statistical prob-
lems that drew their attention.

Oh, one last thing — if you do want to pass on the 

tea-tasting lady to your parents, there's plenty of room 
to scribble some well-chosen equations in the margins. 
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Data Sleuth Solutions

Mystery 1: The Yolk's on You!

Question 1: Clearly, Fry's has something fishy going on with their egg weights.

Question 2: The weight of extra large eggs at Fry's is consistent with the other stores, so the large size has the anomalous 
weight.

Question 3: The students working on the project, Jeff Cummings, John Johnston, Rudy Pinon, and Jim Walewander, made a 
phone call to the egg department at Fry's to clear up the mystery. They found out that Fry's had trouble meeting the 
demand for eggs at that time because hens do not always lay the egg size that is in greatest demand around Easter. Since 
Fry's experienced a shortage of large eggs, they took extra large eggs and put them in the large egg containers. (It would 
be illegal to do the reverse.)

Mystery #2: Buy Me Some Peanuts and Cracker Jacks!

Question 1: The vast majority of the leaves have the value 0, suggesting that most of these prices are whole dollar amounts. 
This makes sense so that vendors do not have to worry about making change with coins.

Question 2: Leaf values of 2 and 5 also make sense, as they probably represent prices that are 25 cents or 50 cents more than 
a whole dollar amount.

Question 3: The two teams that have unusual leaf values in all of these variables are the Toronto Blue Jays and the Montreal 
Expos. The Team Marketing Report newsletter reports prices in American dollars, so the Canadian prices for those teams 
underwent that conversion and therefore did not appear as nice round integer values.
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Scoring patterns in American football games are 
unique since the most common methods of scoring 
points, a touchdown (with a kicked extra point) and a 
field goal, yield seven and three points, respectively. 
Other scoring possibilities, a two-point safety, a two-
point conversion after a touchdown, or six points for a 
touchdown with a missed conversion, are fairly rare. 
Thus, a score such as 14-10 is much more likely than 
an 11-5 game. Participants in various sorts of football 
pools, in which many students and teachers of 
statistics may indulge, are often asked to predict 
individual game scores or choose game outcomes that 
depend on the margins of victory. Would a statistical 
examination of past game results help us make more 
reasonable forecasts of future football outcomes? 

The Dataset
To investigate the characteristics of football scores, we 
use a dataset consisting of the scores from all regular 
season games played in the National Football League 
during the 1998, 1999, and 2000 seasons. For each of 
the 736 games played during this period, we know 
the identity and points scored by the home team and 
the visiting (road) team. We also have a “pointspread” 
assigned to each game that reflects an estimate of the 
relative strength of the two teams. NFL game scores 
can be found at a number of web sites (e.g., www.nfl.
com). The pointspreads used here were obtained from 
ESPN's Pigskin Pick'em game (games.espn.go.com). The 
dataset can be downloaded as an ASCII text file from 
the Journal of Statistics Education data archive at www.
amstat.org/publications/ jse/jse_data_archive.html. 

How many points do NFL teams score in a 
game?
With scores for two teams in each of the 736 games, 
we have a total of 1472 team scores to examine. 
Figure 1 shows their distribution. We note that the 

most frequent score during this period was 24 points 
(102 times), followed by 20, 17, 31, and 10 points. 

Scores that are multiples of seven are less common 
than many football fans might expect. In fact, only 19% 
of these game scores are divisible by seven. If we look 
at the frequency of game scores mod 7 (Table 1), we see 
that the most common result is 3 (generally some 
touchdowns plus a single field goal), then 6 (two field 
goals or a touchdown with missed conversion). These 
account for more than half of the game scores, while 
scores such as 11, 18, and 25 points are very rare. We 
see a similar pattern in the winning margins, with 1 in 
4 games being decided by exactly one field goal or one 
touchdown (Table 2). The most common game scores 
(both teams) during this period were 16-13, 20-17, 
13-10, and 23-20, each occurring about a dozen times. 
Note that the NFL uses an overtime period to help 
minimize tie games and that overtime games are fre-
quently won with a field goal. 

Can the number of points scored by one 
team help us to predict the points scored by 
its opponent?
Tennessee scored 36 points in its first game of the 
1999 season against Cincinnati. What information 
does that give us about how many points Cincinnati 
scored in the game? Perhaps the game was a high 
scoring affair. When one team scores a lot, its 
opponent may be inclined to be less conservative and 
take more risks to match that high score, thus 
increasing the probability that they will also score a 
lot. On the other hand, a team scoring many points 
may be much stronger than its opponent, so perhaps 
we should expect a relatively low score from the other 
team. The first scenario would argue for a positive 
correlation between scores in the same game, while 
the second would lead to a negative correlation. 

As Figure 2 demonstrates, neither viewpoint is cor-
rect. In fact, the home team's score is remarkably 
independent of the number of points scored by its 
opponent (r = 0.023, p-value = 0.540). Note: The plot 
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uses a technique known as jittering to randomly offset 
points that would be plotted at the same location (i.e., 
identical game scores) so that we can see the multiplic-
ity better.

One can also investigate this relationship with a 
contingency table. If we classify scores of each team in 
natural intervals of 0-6, 7-13, etc. with all scores above 
35 points as a last group, a two-way table of home vs. 
road scores yields a chi-square value of 35.4 with 25 
degrees of freedom and a p-value of 0.082. This would 
indicate no significant association (at a 5% level) 
between the home and visiting team scores.

How well do pointspreads predict game 
outcomes?
The pointspread is a device used to handicap games in 
order to make the “outcome” as uncertain as possible. 
In our dataset the pointspreads are applied to the road 
team's score (so a negative point spread indicates that 
the road team is favored). Thus, to determine the 
winner “against the spread,” we add the value of the 
pointspread to the visiting team's score before 
determining the result. For example, the first game in 
the data set has Jacksonville playing at Chicago in the 
first week of the 1998 season. The pointspread for 
that game was –8.5 points, so Jacksonville was 
perceived as the stronger team by a bit more than one 
touchdown. The final score for that game was 
Jacksonville 24 – Chicago 23. Although Jacksonville 
won the game, the winner against the pointspread was 

Chicago. All pointspreads are of the form integer + 0.5 
so a winner against the spread is determined for every 
game. 

Figure 3 shows a plot of the actual game difference 
(Home score – Away Score) vs. the pre-game 
pointspread. Although the plot shows a fair amount of 
scatter, there is a clear positive association (r = 0.44, 
p-value = 0.000). Thus a team that is favored to win by 
a lot tends to win by more points than a team with a 
smaller spread. Data to the right of the y-axis (the 
“pointspread = 0” line) are cases where the home team 
was favored by the pointspread (66.2%), while points 
above the x-axis (the “actual difference = 0” line) are 
games that the home team actually won (59.2%). Points 
in the first (upper right) and third (lower left) quad-
rants represent games in which the pointspread 
accurately predicted the winner of the game (66.8% of 
these games). “Upsets” appear in the second and fourth 
quadrants, where the actual game difference has a dif-
ferent sign than the pointspread. 

The “y = x” line that's drawn on the plot indicates 
how teams did against the pointspread. Points above 
the line are games in which the home team beat the 
pointspread (52.3%) and those below the line are 
games where the winner against the spread was the 
visiting team (47.7%). A two-tailed test shows that this 
proportion is not significantly different from 50% 
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Figure 1. 

Figure 2.

Table 1. Individual game scores (mod 7)

Score (mod 7) Freq. Pct.

0 279 19%
1 84 6%
2 209 14%
3 435 30%
4 31 2%
5 101 7%
6 333 23%

Table 2. Most Common Winning Margins

Winning Margin Freq. Pct.

3 112 15%
7 37 10%
10 42 6%
1 36 5%
17 33 4%
14 32 4%
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(p-value = 0.210), so there would appear to be no sta-
tistical advantage to always picking for or against the 
home team when using a pointspread. Points between 
the “y = x” line and the x-axis represent the games 
(18.3%) where the winner against the spread was dif-
ferent than the winner of the game. 

The favored team successfully beat the pointspread 
in 358 of the 736 games (48.6%) with the underdog 
either winning the other games outright or at least 
coming close enough to cover the spread. As with the 
home teams, there is no statistical advantage, when 
using the pointspread, to always picking for or against 
the favored team (p-value = 0.461). The least squares 
line through these data is remarkably close to this “y = 
x” line. Its equation is Actual Difference = 0.93 + 1.02 × 
Pointspread. A t-test to see if the slope is significantly 
different from one yields a p-value of 0.8318. Thus 
every increase of one point in the pointspread would 
yield an expected increase of about one point in the 
actual difference. It would appear that the oddsmakers 
do a pretty good job of “tilting the playing field” to 
even up the game results. 

Suggestions for further investigations
Are the scoring patterns for other levels of football 
(e.g., college, high school, Canadian Football League) 
similar to those in the NFL? Do the patterns 
discovered in 1998–2000 hold in earlier (or later) 
seasons? How significant is the home field advantage 
(if one exists at all)? Some fans will always pick the 

underdog when the pointspread is double digits. Is 
this a reasonable strategy? Although the slight 
advantages for home teams and underdogs against the 
historical pointspreads were not statistically 
significant, would there be a clear advantage to always 
picking an underdog that is playing at home? Can you 
determine a method that uses past games scores to 
predict future outcomes that does better than the 
pointspread at picking the winning teams?

Conclusion
What score should we choose the next time we are 
faced with predicting the outcome of a football game? 
Without any other indication of the relative strength of 
the teams involved, the analysis above would suggest 
the most common margin of victory (3 points) be 
awarded to the home team. The median scores for 
home and visiting teams in the data set were 22 and 20 
points, respectively, but we know that 22 = 1(mod 7) is 
pretty rare. The mean score for home teams was 22.5, 
so perhaps we should round up and predict a 23-20 
victory for the home team, giving us scores congruent 
to 3 and 6 (mod 7) and matching one of the four most 
common game results. But then we also might want to 
consider the pointspread, look at records against 
common opponents, check on the status of injured 
players, adjust for play in recent games, factor in the 
phase of the moon and make a guess.
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The committee on Statisticians in Defense and National Security of the American Statistical
Association is pleased to announce the second annual prize for the best student paper applying
statistics to defense issues. The 2001 prize was won by John Leffers for his paper titled
"Statistical Validation of Track Quality Numbers for Joint Interoperability Testing of Theater Air
and Missile Defense Families of Systems".

The prize competition is open to any undergraduate or graduate student enrolled in any institu-
tion of higher education. The paper must have been written in the preceding academic year (for
this year's prize, July 1, 2001 to June 30, 2002). The paper must be nominated and submitted
by a faculty member at the institution. Papers are limited to 5,000 words or 20 pages, including
graphics. Student Theses meeting these length requirements are acceptable.

Papers will be judged on the quality of the statistical work, the quality of the written presentation,
and the significance of the contribution to understanding of defense issues.

For 2002, nominations and three copies of the paper should be submitted to
Professor Dave Olwell, Department of Operations Research, Code OR/OL, Naval
Postgraduate School, Monterey, California, byJuly 1, 2002. Questions should also be
addressed to Professor Olwell at dholwell@nps.navy.mil. The prize announcement
will be made at the annual JSM meetings.
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For 2002, the prize consists of a plaque and $500


