
Christine M. Anderson-
Cook interviews Sallie 
Keller-McNulty

Peter Flanagan-Hyde asks  
Can You See the Trees for 
the Forest?THE MAGAZINE FOR STUDENTS OF STATISTICS : : ISSUE 47 



Looking for a   
   JOB?

http://jobs.amstat.org

STATS

Your career as a statistician is important to the ASA, and we 
are here to help you realize your professional goals. 

 Visit the
ASA JobWeb online

TODAY!

VIEW ALL JOBS…Search by keyword, job category, type of job, job level, state/country 
location, job posting date, and date range of job posting.  

ADVANCED SEARCH…Use multiple search criteria for more targeted results.

MAINTAIN A PERSONAL ACCOUNT…Manage your job search, update your profile, and 
edit your résumé. (ASA members only)

USE A PERSONAL SEARCH AGENT…Receive email 
notification when new jobs match your criteria.  
(ASA members only)
 
ADVERTISE YOUR RÉSUMÉ…Post a 
confidential profile so employers can find 
you. Registered job seekers can submit their 
résumés to the résumé database in a “public” 
(full résumé and contact information) 
or “confidential” (identity and contact 
information withheld) capacity. A confidential 
submission means only an employer can 
contact the applicant using a “blind” email. 
(ASA members only)

The ASA JobWeb is a targeted job database and résumé-posting service that 
will help you take advantage of valuable resources and opportunities. Check 
out the many services available from the ASA JobWeb. 



STATISTICAL SNAPSHOT  
A Permutation Test of the  
Challenger O-Ring Data 6
 Story First,  
 Analysis Second 18 
 
TRY THIS   

 
  

puzzles

guest writers
An Interview with  
Sallie Keller-McNulty 
CHRISTINE  
ANDERSON-COOK  
is a technical staff member 
of the Statistical Sciences 
Group at Los Alamos 
National Laboratory. 
She is a Fellow of the 
American Statistical 
Association and a senior 
member of the American Society for 
Quality. She is the current chair of the ASA 
Section on Quality and Productivity. She 
graduated with a PhD in statistics from the 
University of Waterloo and was a faculty 
member in the Department of Statistics 
at Virginia Tech. Her research interests 
include design and analysis of experiments, 
response surface methodology, graphical 
methods, and reliability.

STATScontents

JUANA SANCHEZ is 
a lecturer in the 
Department of Statistics 
at the University of 
California, Los Angeles 
(UCLA). She has been 
teaching there since .  
Her research interests 
span statistics education, 
time series analysis, 
and Bayesian statistics. She particularly 
enjoys working on research projects with 
undergraduate students.

JEAN WANG works as a 
statistician at the Mayo 
Clinic. She received a 
bachelor’s of science in 
statistics from UCLA in 
December .  (e 
statistics program at 
UCLA is only two years 
old, so Wang is one of 
the first graduates of the 
program.

Which Came First, the 
Chicken or the Egg?



featuresSPECIAL TOPICS

An Interview  
with Sallie  
Keller-McNulty

Which Came First,  
the Chicken or  
the Egg? 

COLUMNS

page 9

STATISTICAL SHORTS

page 6

EDITOR'S COLUMN 2
 
AP STATISTICS  
Can You See the Trees for 
the Forest? 9

STATS PUZZLER   
How High Can r Go? 17 
 
R U SIMULATING? 
Shrinking Students,    
Poisoned Children, and   
Bootstraps 19

STATISTICAL -SINGS  
Bonnie and Clyde Meet  
Bayesian Statistics 24

REFERENCES and Additional  
Reading List 28

““If we are going to make a 
mark, it may as well be a meaningful 

one. The simplest—and most useful—
meaningful mark is a digit.”

John W. Tukey, Statistical Papers in Honor 
of George W. Snedecor, 1972



2     ISSUE 47 STATS    ISSUE 47 STATS    3

W
  ith this issue, we are taking STATS to the next level. This is 
our first issue in full color, and it is jam-packed with some 
great articles.

We start with an interview with Sallie Keller-McNulty, past president of 
the American Statistical Association (ASA). She discusses how she became 
a statistician and what she sees as some of the exciting opportunities 
for statisticians today and tomorrow. She also provides sage advice for 
students on preparing for a career in statistics. (ank you, Sallie. We 
are honored to have you lead off the new STATS, and we appreciate your 
insights and advice.

Next, in our AP Statistics department, Peter Flanagan-Hyde asks, “Can 
you see the trees for the forest?” With just a little algebra, he shows us how 
to calculate the variance without calculating the mean. Is that possible? He 
clears away the forest so we can see the trees. 

As we are considering some of the classic questions, Juana Sanchez and 
Jean Wang ask the proverbial question: “Which came first, the chicken or 
the egg?” (ey show us how to answer that question with statistics using 
time series analysis. See if you can do the analysis with them. 

(e STATS puzzler always has an eye-opening puzzle for us, and this 
issue’s puzzle is no exception. He asks, “How high can the correlation 
coefficient go?” Well, it can go as high as +, right? Check out his puzzle 
and see what you can discover about correlation. (ere is always something 
new to learn in STATS.

For fun, we have a different kind of statistical puzzle in this issue. 
Undoubtedly, you have tried your hand at Sudoku—hasn’t everyone? Well, 

answer the statistical questions at the end. Send us your answers to qualify 
to win an ASA T-shirt. 

Antonio Curtis—a student at California State University, East Bay—is a 
guest author with Bruce Trumbo for our R U Simulating? column. (ey are 
using the nonparametric bootstrap technique to look at shrinking students 
and poisoned children. (anks, Antonio, for the neat stuff! Remember that 
if you send in the correct answers to the R U Simulating? challenges, you 
could win your choice of ASA T-shirt. 

of forensics. It is fascinating how the criminal mind works, but it is even 
more fascinating how the statistically trained mind works.

Also new in this issue of STATS is an additional reading department 
where you can find the references for each article and other resources to 
help you as you study statistics.

As you think about the world around you and how statistics can help 
you better understand your world, write up an article for STATS to share 
your thinking with statistics students everywhere. 
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An Interview with 

SALLIE KELLER-MCNULTY is a Fellow and 
past president of the American Statistical 
Association. Her research focuses on 
computational statistics and visualization, 
statistical modeling, data access and 
confidentiality, massive dataset analysis, 
environmental statistics, and sampling. She 
is dean of the George R. Brown School of 
Engineering at Rice University in Houston, 
Texas. Before joining Rice University in 
July 2005, she was the group leader of the 
Statistical Sciences Group at Los Alamos 
National Laboratory.

CAC: Can you tell us a bit about how you 
decided to become a statistician and what part 
of your first exposure to statistics made it so 
appealing?
SKM: I was finishing up all my coursework for 
a PhD in mathematics at the University of South 
Florida, and had finished all my exams, when I took 
my first statistics course. I fell in love with statistics 
and decided it was what I wanted to do.

It was actually a design of experiments class, 
which was theoretical combinatorial design—the 
very mathematical kind with factors labeled with 
As and Bs and levels indicated with +s and –s. For 
whatever reason, I just loved it. When I talked about 
this with my advisor, he said, “If you really want to 
study statistics, we need to prepare you to go to one 
of the major statistics programs.” So, I decided to do a 
master’s thesis with him.

(e idea was for me to learn a lot more about 
statistics. I did a thesis on robust permutation tests. 
(See the Statistical Snapshot on Page .) I learned 
a lot about statistical testing and even more about 
computational statistics. We ended up doing a nice 
piece of work that eventually got published. He then 
recommended that I apply to some of the leading 
statistics programs. I was accepted at Iowa State and 
decided to join their program. I ended up working in 
the area of statistical computing.

CAC: You spent a number of years working at 
Los Alamos National Laboratory (LANL), where 
I had the privilege of working with you. Something 
you told me during my job interview was how 
important the work done there is to the nation. 
Do you feel this is something more statisticians 
should strive for—doing important work?
SKM: I think that statistical science, as a discipline, 
has everything to do with data. We are driven by and 

Sallie Keller-McNulty
by Christine M. Anderson-Cook

At the Joint Research Conference on Statistics in Quality, Industry, and 
Technology—held in Knoxville, Tennessee, last June—I met with longtime 
friend and colleague Sallie Keller-McNulty. I asked if she would be willing 
to share her thoughts and insights about statistics with STATS. She 
enthusiastically agreed, and here is what she said.

grounded in data. By data, I am really talking about 
all sorts of information—not just numbers as we 
sometimes see it as students, but all kinds of soft and 
hard information that needs to come together to solve 
problems. All of that is data. Every global challenge we 
are confronted with today, at its root, is related to data, to 
the integration of different sources of information, and to 
guiding policy based on data. 

We are the science of “empirical studies.” It is 
not necessarily the data of a single experiment for 
some little phenomena that should be our focus, 
but it is about looking at all kinds of information 
swirling around us. Pick up the newspaper, look 
on the internet, look at the satellites. All of these 
make up the data of our modern world. How does 
statistics help this come together, and how can it 
help with today’s problems? (at is the domain of the 
statistician. And so, if you start to think about that, it 
means we need to be more visible, we need to be more 
engaged, and we need to be more in the leadership of 
finding solutions for today’s grand challenges.

(e biologist knows about biology. (e statistician 



talks to the biologist and tries to understand his or her 
data and help define the empirical methods that will be 
the key to the biologist’s discoveries. (is is not to say 
that we should not know something about a lot of other 
areas of science, technology, engineering, social sciences, 
humanities, and the arts. It is obviously necessary for us 
to know something about these areas, but at the end of 
the day, our science is about data, and that is what we 
need to really know.

I learned from my time at LANL that if we are not 
engaged with some of the important global challenges 
in the world today—everything from world hunger to 
literacy to security—then we will be disappointing 
society. We have something to offer. We need to 
acknowledge this and join in the ownership of 
those problems. 

CAC: Not many statisticians at universities end 
up working in engineering departments, yet you 
are the dean of engineering at Rice University. 
How do you feel your experience with statistics 
helped prepare you for this role?
SKM: When I was initially considered by Rice University 
for the position of dean of engineering, I thought it 
was rather curious. After being hired, the early publicity 
revolved around the fact that a woman had been selected 
to be the dean of engineering, which made Rice the 
only university with women as dean in both science and 
engineering. (e dean of sciences, Kathleen Matthews, 
is a leading biochemist. After a while, I realized this 
publicity was really a smoke screen for the fact that 
Rice University had hired a statistician to be the 
dean of engineering.

I should point out that Rice has structured the 
engineering college to include statistics, computer 
science, and computational and applied mathematics. As 
I began to meet my faculty in all the various areas—such 
as civil engineering, electrical engineering, chemical 
engineering, bioengineering, environmental engineering, 
computer engineering, and mechanical engineering 
and materials science—I discovered huge connections 
between my background and my new colleagues’. We 
shared many things that we have been talking about for 
years in statistics, including being grounded in significant 
real-world problems, trying to drive toward solutions that 
can be implemented, being systems thinkers, and being 
willing to jump into the middle of a complex problem 
that needs a solution. 

We statisticians talk about the scientific method and 
are willing to keep cycling through the method, iterating 
toward ever-improving solutions. Engineers are willing to 
do the same thing. I believe we have a major connection 
in the way we think and the way we approach the world 
around us. Since I discovered that, I have felt very much 
at home in the school of engineering, and I think I bring 
a sense of new curiosity to the school. I like to tell people, 
particularly junior colleagues, that the wonderful thing 
about being a statistician is that no one expects you 
to know volumes about the other areas of science and 
engineering, even though we often have some depth of 

knowledge. Colleagues are quite content to provide the 
details of the application on which you are collaborating. 
Quite often, a new set of eyes can challenge the basic 
assumptions of the problem and raise some very 
important issues. 

(e fact that we have been trained to ask questions, 
to probe, to be inquisitive, to be critical thinkers, and to 
want to document assumptions is a very strong positive 
and one of the key aspects that we bring to collaborative 
research. (at’s what we do, and as I have come to 
understand, that is what the engineers do as well. 

CAC: I know you feel that this is a very exciting 
time to be a statistician. What opportunities 
do you see coming, and what do you think 
statisticians can do to help increase their impact?
SKM: We have long been told as part of our statistical 
training that we, as statisticians, are the guardians of the 
scientific method. It provides a means to develop and test 
hypotheses, to design studies and perform analyses, and 
to make inferences about what our experimental data are 
telling us. (is is an iterative process for thinking about 
problems and cataloguing what we know. But today, the 
scientific landscape has really changed. Today, we have a 
lot of information available to us, and we really need to 
incorporate all sorts of things into solving the complex 
problems confronting us.

Interdisciplinary science is the future. Interdisciplinary 
teams, comprised of scientists and engineers from a 
broad spectrum of disciplines, will tackle the significant 
problems of our generation. (ere is no longer a call for 
the Renaissance man or woman, but rather a focus on 
the Renaissance team. Innovation will come in the spaces 
between disciplines. Everything is coming together 
to help us solve some great challenges, whether 
it is nanotechnology or the spread of a pandemic 
or going to Mars. All will require a new kind of 
interdisciplinary thinking.

I will argue that it is our field—statistics—that 
understands the value of information and will find 
creative ways of combining information. We should 
be the ones emerging as the leaders in this new era 
of interdisciplinary science. We are the quintessential 
interdisciplinary scientists, and we need to step up to 
the plate and lead the integration of science, not simply 
‘guard’ the scientific method.

CAC: As someone who worked with you at 
LANL, I know you are a very inspiring leader. 
What have you done over the years to work on 
developing your leadership skills?
SKM: I have a philosophy about that, which is not 
necessarily consistent with what others believe. In my 
mind, there is a real distinction between leadership 
and management. I really believe people can learn 
management skills. But leadership is a little different. 
Leadership is something you either have or do not have, 
and becoming a leader seems to just happen when you 
are not looking.
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““We are the  
quintessential  

interdisciplinary  
scientists.”



Many people have said to me that I am a great manager, 
but the truth is, I would be happy to hand that off to 

inspiring leader, yet I do not necessarily see myself 
in that same light. I do feel that once you realize you 
have leadership capacity and realize you are seeing 
things differently than other people, it is important 
to work on developing those skills further to broaden 
the arenas in which you can apply your leadership and 
develop broader vision.

I have had a wonderfully devoted, eclectic set of 
mentors throughout my career—people who have both 

the time to watch, to listen, and to wonder how in the 
world they were able to put complex ideas and issues 
together. (en, I began to realize that my own mind 
was similarly making some novel connections. Going 
down this path, I learned how to focus my listening and 
recognize the value of these insights. (e next phases of 
my leadership development involved continuing to listen 
to other people, helping them see potential new paths, and 
synthesizing detailed information to create a larger vision.

person who influenced my leadership development. I learned 
from him that leaders must have “no fear.” (ey need to 
surround themselves with the smartest people they can—
even people smarter than themselves—and to really listen 
to what they are saying. If you do this, magic will happen. 
However, I have observed this is a very hard thing for many 
people to do.

CAC: What skills do you think are helpful for 
students of statistics to work on or study during their 
university years?
SKM: Communication! Every form is important—writing, 
speaking, and presenting. Being a good team member 
and a good team leader require communication skills. It is 
important to be able to communicate complex ideas at a very 
high general level to capture the most important aspects and 
communicate them in a compelling way. At the same time, it 
is important to be able to talk clearly about details with our 
statistics, science, and engineering colleagues. It is important 
to have the patience to learn, develop, and grow in all these 
areas. It is not an easy process, but good communication 
skills will help your ideas be heard, and they also will clarify 
your own thinking about important problems. 

Fundamentally, statistics is not about data analysis; 
it’s about understanding and supporting decisionmaking. 
(is should not be confused with decision analysis, 
which is another technical mathematical concept. (e 
decisionmaking I am talking about involves shaping 
policy and considering the politics of the decision and 
the personalities involved. To be effective in that arena, 
it is important to be a perceptive listener and to have 
a willingness to throw yourself into the middle of a 
debate and make a strong argument based on a clear 
interpretation of the information available. Sometimes, 
it involves mediating; sometimes, it is about being very 
firm and direct; sometimes, it is figuring out how to be a 
good team player.

(ink about it: Uncertainty quantification is our world. 
Who in our society better understands the concept of 
uncertainty? Who in the highest levels of our society and 
the governance of our society understands the impact 

to communicate what we know about problems that are 
important to the world. Communication is incredibly 
important. Learn when you are being effective, and 
recognize when you are not. Know when to make another 
attempt at explaining your position, and know when to 
stop. Know when to get help from people in other areas 
who are effective at communication.

skills is that when we teach communication, we frequently 
teach it as a single, isolated course: “Go take a technical 
writing class so you can learn how to do a presentation or 
learn how to put your materials together.” We need to focus 
on communication, not as something that we do every 
Tuesday, but as something we do every day in all aspects of 
life. Communication needs to be integrated into everything 
you do, in all your studies and in every mode of your life.

CAC: Do you have any other advice for students in 
statistics that might help shape their studies and 
early careers?
SKM: I guess my advice is to look around at the breadth 
of our field, to meet lots of people, and to engage and start 
building a network of colleagues. Get to know the people 
in college with you. (ese are your future colleagues. 
Introduce yourself to established statisticians and take 
advantage of meetings—the Joint Statistical Meetings 
and other conferences—to network with your peers across 
the profession. Whether they are in industry, academia, 
or government does not matter. Build a network of people 
who know your strengths with whom you can discuss 
technical matters and turn to for career advice. Another 
thing that is important is to maintain a curiosity in 
science, engineering, and everything around you.

People frequently ask me what I look for when I hire 
somebody. (ere are three key things. THE FIRST 
thing I look for is strong training in some area of 
statistics. If the person has that and is smart, then 
they are going to be able to learn other aspects of our 
field. thing I look for is whether they 
have great computational skills. In statistics today, 
every aspect of methodological development and 
applications reaches way beyond the preprogrammed 
packages that you learn in school. You will need to have 
some flexibility in terms of being able to develop and 
implement new methodology, so computational skills 
are critical. THE THIRD thing I look for is somebody who 
has an incredible curiosity for science. If they have that, they 
are going to continue to ask questions, engage, and integrate 
our field into science, engineering, and society.

So, I encourage all students of statistics to focus on both 
breadth and depth in their training. Be a “T-person,” with 
good depth in at least one statistical area and breadth across 
many others. Continue to work on your communication 
skills and never lose your love of science. (at is a 
combination that will lead to success. 
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T
  he disastrous loss of the Challenger 
space shuttle in  gave rise to 
what has become one of the classical 

datasets of statistics. Challenger was launched 
at the unusually low temperature of °F, in 
spite of evidence—judged to be inconclusive 

associated with low temperatures. Afterward, 

implicated in the explosion of Challenger. 

four were launched when the temperature was 
below °F and  were launched at higher 

on each of the previous flights is given in 

incidents and temperature?

Temperature at  Number of  

  
Below 65°F 1, 1, 1, 3
Above 65°F 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 
 0, 0, 0,  1, 1, 2

A Permutation Test of the  

VIEW OF THE O-RING. This is a close-up 
photograph of the O-ring in the top of 
the aft segment of the right solid rocket 
booster (SRB) flown on Space Shuttle 
Mission 51-L. The photograph was 
released following a hearing on the space 
shuttle accident.

PHOTO courtesy of the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Challenger 
O-Ring Data

TABLE 1. 

+ S T A T I S T I C A L  S N A P S H O T 
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(is is a standard two-sample 
situation. We want to test the null 
hypothesis that temperature makes 
no difference against the alternative 
that lower tempera tures tend to be 

We usually would use the two-sample 
t-test, but it is not appropriate here 
because the few observations available 
do not suggest normal populations. 
Moreover, nonparametric tests—such 
as the Wilcoxon rank sum test—are 
not applicable because they assume 
continuous data with few ties, while the 

of ties.
Let’s take a permutation approach. 

We can use a permutation test to find a 
p-value by computing the proportion 
of possible groupings of the observed 
data that produce a test statistic as 
extreme—or more extreme—than 
what we have observed. We proceed by 
considering all possible arrangements 
of the  observed numbers with four 
in one group and  in the other. (e 
total number of these arrangements is 
“ choose ,” or ,. For the test 
statistic, we will use the total number 

test statistic for each arrangement. (e 
most extreme values of the test statistic 
would occur if the lower temperature 
group had outcomes , , ,  (sum 
of seven) or , , ,  (sum of six), in 
addition to the observed , , ,   
(sum of six).

By a combinatorial argument, we can 
show there are  ways to get the first 
arrangement: Multiply the  ways to 
select two s out of five s, multiply the 
one way to select one , and multiply by 
the one way to select one . Similarly, 

there are  ways to get , , ,  and 
 ways to get , , , .

(is gives a total probability of 
( +  + ) / , = .. So 
the p-value of the permutation test 
of our hypothesis is ., or about 
%. (is is fairly strong evidence that 
low temperature is associated with an 

While it is not difficult to find the 
p-value of the permutation distribution 
of our test statistic in this simple 
situation, it can be very difficult to 
do so for larger datasets. (us, it is 
common practice to approxi mate the 
permutation distribution by simulation. 

Applied to our data, the simulation 
procedure would be to make random 
permutations of the  observations, 
take the first four observations in each 
permutation to be the low-temperature 
group, and compute the test statistic 
for the result. Repeating this procedure 
many times, we take the observed test 
statistic value to be the simulated  
p-value. With , iterations, our 
result is p-value ≈ .—very close 
to the exact value obtained above. 

FIGURE 1. Shown above is a histogram of the simulated permutation 
distribution. The superimposed curve is the density function of the 
t distribution with 22 degrees of freedom shown for comparison.

Permutation Distribution Compared with t(22)

Lesson Learned
We can use a permutation test to 
estimate the p-value with combinatorics 
or simulation, even when the conditions 
necessary for other tests are not met.



After you have solved the  
puzzle, think about the  
following questions:
Should the puzzle be easier, or harder,  
to solve when the symbols are letters, rather 
than numbers?

What is the effect on the difficulty of  
a puzzle when the letters are used  
more than once?

Do you use the same strategies to solve a 

How is the statistical concept of  
“degrees of freedom” related to solving this 
kind of puzzle?

Send your answers to 
STATS Editor Paul J. 
Fields at pjfields@byu.edu; 
if it's correct, you will be 
entered into a drawing for 
an ASA T-shirt.
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(e  x  grid used in Sudoku puzzles 
is a special type of Latin square, which 
is an n x n matrix filled by n symbols 
so each symbol appears only once in 
each row and column. It was named by 
Leonard Euler, the great eighteenth-
century mathematician. He used Latin 
characters to fill his squares, hence the 
name “Latin square.”

In Sudoku, the symbols are the 
numerals  through , but a Sudoku 
grid has the added constraint of the 
nine nonoverlapping  x  subgrids also 
containing  through  without repeating 
any of the numerals.

same basic rules apply, but the nine 
symbols are the letters S-T-A-T-I-S-T-I-C. 
Some of the letters are used more than 
once, but every row, column, and subgrid 
must contain those nine letters in the 
exact frequency as in the word “statistic.”

you can solve it.

By the way, the solution is shown on Page 25. 

Two final questions: 

Can you find any place in the puzzle  
where the letters come in the right  
order to spell “statistic”?

Is this a unique solution, or are there more?

T R Y  T H I S

Win  a  T-shirt
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I
magine yourself accompanying a biologist in a 
small plane flying over a dense forest. Below is 
an undulating surface composed of the tops of 

a variety of trees—some taller, some shorter. You 
quickly gain a sense of the variability in the heights 
of the trees in this forest. But, because you cannot 
see the forest floor, you do not have an immediate 
appreciation for how high above the ground the 
treetops typically reach, so you cannot find a 
measure of center for the heights of the trees. Is 
it possible that the measurements you can make 
from the plane—differences in the heights of the 
trees—can be turned into a more formal measure 
of variability, such as the standard deviation?

(e surprising answer to this question is “Yes!” 
It is possible to calculate the standard deviation 
of a group without calculating the mean, or even 
knowing any of the individual measures. In fact, in 
many cases, there is a much more immediate sense 
of variability than there is of center.

As another example, imagine you are in the 
produce section of your local grocery. Examining 
the bin of oranges, they all seem about the same 
size, but not so for the potatoes. It is easy to see 
at a glance that the potatoes are more variable in 
size than the oranges. It may be much harder to 
estimate which has the greater mean circumference 
by just looking at the two bins. (ere is something 
fundamental about variability that is separate from 
the measures of center.

(ere are two ways to think about variability. (e 
first, variability about the mean, is the most commonly 
presented. (is idea is expressed in the usual formula  
for variance found in every introductory statistics 

Student 1 2 3 4 5 6 7 8 9 10

Weight 95 124 131 121 104 97 116 151 122 139

textbook: (e population variance is the mean 
squared deviation of each measurement from the 

mean, or 
 

n
i2

xi µ
2

( (
 .

 

(e second way of thinking about variability is 
the variability among the individuals in the group. 
In many situations, this is really more natural. 
At the produce bin, what is obvious about the 
potatoes is that there is a big difference in size 
between some of the potatoes sitting next to 
each other. We really would not imagine a mean 
size and then compare the potatoes in the 
bin to this imagined mean. It is more about 
looking at differences of the form xi − x j  , 
where the indices i and j reference different 
individuals in the population. Taking a cue 
from the variance formula, does the mean-
squared difference among the individuals 
provide a useful measure of variability? If so, is 
it related to the variance as calculated above? 
Let’s find out.

A Weighty Example
Let’s suppose we have a class of  students. 
We would like to know the variance of their 
weights, but people’s weights are a sensitive 
subject, so it would be nice to be able to 
complete this calculation without actually 
revealing an individual’s weight. For now, 
though, we need these values, so Table  shows 
their weights in pounds:

TABLE 1. Students’ Weights Measured in Pounds

Can You See  
 TREES for the 

FOREST?
the
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to see that this is exactly twice the variance. Is 
this a strange coincidence of this class, or is this 
always the case?

A Little Algebra
It will take only a little algebra to show that the 
mean squared difference is always exactly twice 
the mean squared deviation from the mean. As 
we are adding a large number of variable terms, 
this is a good opportunity to practice working 
with summation notation, too.

To make the notation simpler, we will 
express everything we do in terms of three 
quantities: n, the number of individuals; T, the 
sum (or total) of all the values; and SS, the sum 

of the squares of all the values. In simplified 

summation notation,T=    and SS=          . It is 

worth noting that the mean µ= T
n  and that   the 

index, i, is arbitrary; it’s equally true that T =             

and SS=          .j
j

x 2 ∑

i
i

x 2 ∑

By the usual formulas, you can find that the 
mean weight is  pounds and the variance—
the mean squared deviation from the mean—is 
289 pounds. (e population standard 
deviation is  pounds.

For this class of students, what is the mean 
squared difference of their weights, and does 
this relate to any of the numbers we have 
calculated above? Below is a table of all the 
squared differences. It is important to note 
that the interior of the table (in italics) could 
be calculated easily without weighing any of 
the students. Imagine a long board balanced 

stands on the left end of the board and another 
on the right. Because none of the students in 
the class has the same weight, the lighter one 
will be off the ground. Hand that student one-
pound weights until he or she balances and 
the difference in weights is found. Square this 
number and enter it into Table . When we are 
done, notice we have no measures of individual 
weights and no estimation at all about the 
mean weight in the class.

Notice there are  values in Table , one 
for each ordered pair of students. It is easy 
enough to calculate the mean of these  
numbers; it is  pounds. It is not too hard 

Student 1 2 3 4 5 6 7 8 9 10

1 0 841 1296 676 81 4 441 3136 729 1936

2 841 0 49 9 400 729 64 729 4 225

3 1296 49 0 100 729 1156 225 400 81 64

4 676 9 100 0 289 576 25 900 1 324

5 81 400 729 289 0 49 144 2209 324 1225

6 4 729 1156 576 49 0 361 2916 625 1764

7 441 64 225 25 144 361 0 1225 36 529

8 3136 729 400 900 2209 2916 1225 0 841 144

9 729 4 81 1 324 625 36 841 0 289

10 1936 225 64 324 1225 1764 529 144 289 0

TABLE 2. Squared Pair-Wise Differences in Students’ Weights Measured in Pounds

One student stands on 
the left end of the board, 
and another on the right. 
Because none of the 
students in the class has the 
same weight, the lighter one 
will be off the ground.
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2 SS T 2

n
n or 2 SS

n
T 2

n 2= =

Now, let’s tackle the mean of the squared differences 
of all pairs of individuals. To begin, we will require a 
double summation to work through both members of 
the pairs. (Another way to think about this is that we 
have to work through both the rows and columns of 
the table above). We start with MSD representing the 
mean squared difference: 
 

                                       
To simplify the double summation, we start with 
the inside and work out. Again, we focus on the 
numerator:

Let’s start with the usual formula for the variance   

n
i2

xi µ
2

( (

Expand the binomial 

Substitute for 
summations 

Break the sum apart 
and factor constants 
from sums 

Substitute for 

Simplify

and see if it can be expressed in 

Back over the Forest…
As you and the biologist are flying over the forest, 
you can, in fact, make a measurement on a random 
sample of trees and, through photographic or radar 
measurements, find the difference in height between 
them. Adding up the squares of these differences can 
enable you to make an estimate of the variance and 
standard deviations of the heights of the trees in 
the forest. (e derivation above can be adapted 
for sample variances; it is a little messier, 
but the principle is the same. As with our 
weighty example, this can be done even if 
we cannot see the ground (assuming all 
the trees are standing on level ground). 
No individual tree’s height is known, 
and no estimate of the mean tree 
height is made. So, estimates of 
the mean and variance can be 
calculated independently. 
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terms of these three quantities. 

(e tricky part is the numerator:

Factors with the other 
index are constants
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Factor out constants

Substitute

Simplify 

Divide by n2  to get
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As promised, the mean squared difference is exactly twice the variance.

So,

.

. .
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Using some of the basic concepts of 
introductory statistics, statisticians 
Juana Sanchez and Jean Wang 
attempt to answer the question, 
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C
hickens play a huge role in our lives. As well as 
sometimes acting as pets or ending up sitting on 
plates, chickens show up in pop culture. (ey had 

feature roles in the hit movie “Chicken Run”; they frequently 
guest star in popular games such as “(e Legend of Zelda” 
and “Final Fantasy”; and they take center stage in the classic 
dilemma of causality: “Which came first, the chicken or the 
egg?”

Let’s use statistics to solve this dilemma. We will not 
delve into the philosophical issues. For that, you can watch 
last year’s CBS News Video, “Was the Chicken or Egg st?” 
Rather, let’s use time series analysis of historical data from 
the United States chicken industry to shed some light on the 
direction of causality. 

A time series is a sequence of observations that are 
ordered in time.  Some common examples include daily 
temperatures, weekly stock prices, and monthly employment 
figures. In a time series, the value of a variable for today 
often depends on its value in the past. In effect, the variable 
has some memory of its past and, perhaps, some memory of 
the past of other variables. (us, the nature of time series 
data is different from the data usually studied in statistics 
courses—the observations are not independent. But, like 
many other datasets, time series data can be explained with 
models. In order for a data series to be correctly modeled 
using time series analysis, it must be stationary. A stationary 
time series is one who’s mean, variance, and covariances do 
not change over time.

In our study, the question of causality can be rephrased as 
“Does the chicken depend on the egg, or does the egg depend 
on the chicken?”  We can use a vector autoregressive model 
of chicken and egg data to answer that question.  Although 
this and other time series data analysis methods are advanced 
concepts, the basic ideas come from the fundamentals of 
estimation, hypothesis testing, p-values, and regression analysis.

The United States Chicken Industry
(e main products of the poultry industry in the United 
States are broilers (chicken for meat) and table eggs (eggs for 
cooking). Being the world’s largest producer of poultry meat, 
% of the total United States’ annual poultry production 
is exported. (e United States is also the second-largest egg 
producer in the world. 

Although it has become a highly specialized agricultural 
business nowadays, the commercial poultry industry was 
made up of millions of small backyard farms before the 
s, when meat was a byproduct of egg production. 
Today, poultry products account for about % of all farm 
revenue, and the industry has been transformed almost 
completely from a fragmented, home-owned industry to a 
highly organized, vertically integrated industry linking all 
production decisions from farm to market. 

ISSUE 47 STATS    13
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Chicken and Egg Time Series Data 

chickens hatched with the intended purpose of 
becoming broilers. We will call this variable hatched. 
(e other variable we can study is eggs, but not table 
eggs; rather, we will study broiler eggs.

plot the data, and time series analysis is a good example 
of this. So, let’s look at the plots in Figure . (e data 
span the years between  through . Because 
the values of the time series, hatched and eggs, display 
an upward trend with inconsistent variability, the time 
series are not stationary. (is is common for real-world 
time series data. (ere is also obvious seasonality in the 
data—a repeating periodic effect at approximately the 
same time each year. 

For many nonstationary time series, the trend can 
be removed by differencing the data (i.e., subtracting 
consecutive values of the variable.) (en, the model 
is built using the changes in the variable from time 
period to time period, instead of the original values of 
the variable. 

Differencing
Differencing is an easy and effective method to 
help stabilize a nonstationarity time series. Simple 
differences are differences taken one period apart. 
Seasonal differences are differences taken  periods 
apart. In some time series, we need to do both simple 
and seasonal differencing.

FIGURE 1.  Number of broiler chickens hatched (top) in 
thousands and number of broiler eggs in incubators (bottom), 
in thousands, on the first day of the month

But in time series analysis, we do not rely on 
only our eyes. We also look at two plots that play 
a prominent role in understanding a time series: 
the autocorrelation function and the partial 
autocorrelation function.

Autocorrelation is the association between values 
of the same variable over time. (e autocorrelation 
coefficient ( k) measures the autocorrelation 
between two values in a time series k time periods 
apart.  (e autocorrelation function (ACF) plots the 
autocorrelation coefficents values for k from  and up. 

Partial autocorrelation is the association between 
times series values separated by k time periods 
with the effects of the intermediate observations 
eliminated. A plot of these values is the partial 
autocorrelation function (PACF).

Autocorrelation Functions
If we want to know whether the “memory” of a time 
series goes as far back as k months, that is whether 
the value of hatched this month depends on what 
happened k months ago, then we can test: 

FIGURE 2.  Stationary time series after simple and seasonal 
differencing for hatched and eggs

0:

0:0
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After simple and seasonal differencing, we can see 
in Figure  that hatched and eggs fluctuate around 
a constant mean of zero and the variance looks 
relatively stable with a few extreme values.
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where 0:
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 is the autocorrelation between the value of 
the series at time t and its value k periods before. In 
the graph in Figure , at each lag k (the vertical axis 
numbers), we test this null hypothesis. (e two bands 
in the graphs represent two standard errors in the 
sampling distribution of the sample autocorrelation 
coefficient rk. If a spike is past two standard errors, 
this means the p-value for the test at that lag k is 
smaller than ., and, therefore, we can reject the 
null hypothesis. If so, the spike is significant, and we 
say there is memory or correlation between values of 
the variable at time t and at time t-k. 

Looking at the other time series, eggs, the original 
values display an upward, positive trend, so it also is 
not stationary (see Figure ). We can transform eggs by 
taking simple and seasonal differences so the values of the 
time series fluctuate around a constant mean of zero for 
stationarity (see Figure ). (e sample autocorrelation 
and partial autocorrelation functions for the 
differenced eggs data look similar to the ACF and PACF 
for differenced hatched data (see Figure ). (at indicates 
the model to use for eggs is the same as for hatched: 
MA (, ).

We are lucky; the change in eggs and the change in 
hatched follow the same model. (is will make it easier 
for us to find which comes first, the chicken or the 
egg. But we are not quite ready for that yet. 

Vector Autoregression  
(e question of which variable leads—precedes 
in time—in the movement of two stationary time 
series has been studied often in economics. For 
example, in the context of predicting stock market 
prices, one question can be whether the price of a 
stock that trades in both the United States and, let’s 
say, Germany, is such that the United States price 
leads the German price or the German price leads 
the United States price during overlapping trading 
periods (i.e., during the hours both markets are 
simultaneously open).

Questions such as this can be answered with a 
technique used in econometric analysis called vector 
autoregression (VAR). It is a method that can help us 
determine the time precedence between variables. 
If we find that one variable consistently precedes 
another in time, that would be evidence supporting a 
possible causal relationship.

In our case, we want to see whether the number 
of broilers hatched causes the number of broiler eggs 
or the number of broiler eggs causes the number of 
broilers hatched. For this, we need two regression 
equations: one to regress hatched on eggs and 
the other to regress eggs on hatched. As this is a 
time series model, we want to estimate these two 
regression equations taking into account that there 
could be causality in either direction. So, we estimate 
the two equations together with a common variance-
covariance matrix for both. (is is different from 
separately estimating them. 

FIGURE 3.  Sample autocorrelation and partial autocorrelation 
functions (sample ACF and sample PACF) for the variables 
hatched and eggs

Looking at the sample autocorrelation and partial 
autocorrelation functions in Figure , we can see 
that the ACF has a significant spike at lag  and the 
PACF exponentially dies down. (erefore, based on 
these traits, the model for the variable hatched is a 
moving average process of order  for nonseasonal 
lags. However, as there is also a spike in the ACF at  
months and the PACF shows the seasonality dying down 
at  months, we also have a moving average model at the 

 hatched is  
MA (, ), which is shorthand for saying it is a moving 
average model using lagged variables at one month 
and  months.

Econometrics literally means “economic measurement.” It is the 
branch of economics that uses statistical methods to study empiri-
cally relationships in economic data. Regression analysis and time 
series analysis provide the foundation for econometric investigations.

ECONOMETRICS
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A simple vector autoregression for our problem 
would be a model such as this: 

where       is  hatched and        is eggs, both variables are 
stationary with a mean of zero, and            are constants 
we estimate by regression. 

Looking at the above model, we notice that if       
is zero, but        is not zero, there is no feedback 
from X 2  to X 1 . (us, (hatched) does not 
depend on the lagged value of eggs, but X t2  (eggs) 
does depend on the lagged value of hatched.  
(is would indicate any causality goes in only 
one direction. 

Vector Autoregressive Model for  
Hatched and Eggs 

Based on the structure we found in the 
sample ACF and PACF, the bivariate VAR model is: 

                     

where hatchedt is the value at time t of the seasonal 
difference of the first difference for the variable hatched 
and eggst is the value at time t of the seasonal difference 
of the first difference for the variable eggs.  (e p-values 
of the coefficients correspond to the test of the null 
hypothesis that a coefficient is equal to zero.  A  
p-value ≥ . means the coefficient is not significantly 
different from zero. 

   Comparing the p-values highlighted in orange, we 
can see that hatched last month (one-month lag) 
affects eggs this month, but no lag of eggs affects 
hatched in the present month. (is means that while 
the number of broilers previously hatched affects the 
number of broiler eggs in incubators now, the number 
of broiler eggs incubating previously does not affect 
the number of broilers hatched now.

In “economic-speak,” that means the number of 
chickens hatched is a leading indicator for the number 
of eggs, but the number of eggs is not a leading 
indicator for the number of chickens hatched.  So, in 
our dilemma of causality, the chicken comes first! 

context. A downturn in broilers is probably an 
indication of a sluggish chicken meat market, 
perhaps due to factors such as a recession in the 
economy, maybe some pandemic of avian flu, or some 
other economic factor.  If this is the case, it does not 
make economic sense to keep the number of eggs in 
incubators at the previous level. Why incubate eggs 

that will give chickens that will not 
be sold? Consequently, we would 

expect the number of eggs in 
incubators to go down. So, 

as the demand for chicken 
meat goes up or down, 
the number of eggs in 
incubators should follow.   

Chicken or the Egg?
  As we have seen, time 

series analysis is fun and 
makes use of the basic 

concepts we learn studying 
introductory statistics: 

estimation, test of hypotheses, p-
values, and regression.  We just adapt 

the basic principles to the circumstances 
present in a time series modeling problem. 

For chicken farmers, it is useful to know 
that the number of chickens hatched is a 
leading indicator for the number of eggs 
in incubators. For all of us concerned with 

the dilemma of causality, it is nice to see how 
quantitative methods can help us answer a classic 
dilemma:  Which comes first, the chicken or the 
egg? Conditional on the vector autoregressive 
model that we used, in the economic decision chain 
of the United States poultry industry, the data 
indicate that chickens come first. 

hatchedt = –.  hatchedt-  –.  eggst- – . hatchedt-  – .  eggst-
 p-value =  . p-value = .    p-value = .            p-value = .

     eggst =  . hatchedt-  – . eggst-  + .  hatchedt- – . eggst-
              p-value = .  p-value= .  p-value = .         p-value = .

12 21
ij

12 21
ij

12 21
ij12 21

ij

Vector autoregression is a technique in the econometrician’s tool kit 
for analyzing the dynamic properties of an economic system. One 
application is to estimate the direction of a possible causal relation-
ship between two variables, X and Y. Least squares regression is used 
to examine the autocorrelation (“self-correlation”) due to the time-
dependence of each of the variables. First, the analysis is performed 
with X as the dependent variable and its historical values and the Y val-
ues as the independent variables. Then, the process is repeated with Y 
as the dependent variable with its historical values and the X values as 
independent variables. Comparing the results of the two regressions 
can show the direction of possible causality.

VECTOR AUTOREGRESSION

X t1

X t1 X t2
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I
magine you are sitting 
at a large table. (ere are 
three objects on the table in 

 index cards, each with an X written 

 more index cards, each labeled with a Y. 
Directly in front of you, between the two 

sets of index cards, is a sheet of paper with the 
following instructions:

Each of the  cards in front of you has a 
whole number written on it. Your task is to turn 
the cards over, look at the numbers, and then 
create  pairs of cards, with each pair made of 
one X card and one Y card, and with no card in 
more than one pairing.

(e numbers on the X cards are whole 
numbers. (e lowest of these numbers is zero, 
and the highest is . (ese X numbers have a 

x) of five and a standard deviation ( x) of 
three.

(e range of the Y numbers is the same as 
that of the X numbers: zero to . Moreover, 
the Y y = ) and 
standard deviation ( y = ) as the X numbers.

Can   r  
Go?

S TAT S  P U Z Z L E R

How High  

SCHUYLER W. HUCK 
teaches applied statistics at 
the University of Tennessee. 
He is the author of Reading 
Statistics and Research, a 
book that explains how 
to read, understand, and 
critically evaluate statistical 
information. His books and 
articles focus on statistical 
education, particularly the 
use of puzzles for increasing 
interest in and knowledge of 
statistical principles.

Within each set, the numbers can be repeated 
and, thus, can appear on more than one card. 

 Your goal in forming the  pairs of numbers 
is to create a bivariate set of data such that the 
Pearson product-moment correlation, r, between 
the X and Y numbers is positive and as high as you 
can make it.

pairs of numbers.  
Imagine now that you have performed the task 

described on the sheet of instructions and your 
 pairs have been analyzed to determine the 
correlation between the X and Y numbers. How 
high can r go?

See Page  for the solution to this puzzle. 

by Schuyler W. Huck
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If we know a little physics—or, for that 
matter, just take a moment to look at a plot 
of the data—we know the path of the ball is a 
curve, so a better model would be  
 y= ß + ßx + ß x.

A Useful Analysis
By doing a regression of y on two variables,  
x and x, we can find the best-fitting parabola. 
When we do this, we find that the estimate of 
ß is ., so there is no constant term. (e 
best-fitting parabola is
y = .x – .x. 
    If we plot this parabola (not shown) through 
the points in the figure, the fit appears to be 
almost exact. Also, this equation corresponds 
well with the standard formula from physics for 
the height of a ball thrown upward,
h = vot + (½) gt, where h is the height of the ball 
after t seconds, vo is the initial velocity of the 
ball in meters per second (m/s), and g = –. m/s 
is the known value of the acceleration due to 

g = (–.) = –., 
which is consistent with the known value. Also, 
we see that the ball in our photograph must have 
been thrown into the air with an initial velocity 
of about . m/s.

A Hasty Start
We are eager to get started on our statistical analysis. 
First, we find the correlation between the two variables; 
it is r = ., which seems to indicate a high degree of 
linear association. Based on this information, we decide 
to find a regression equation to predict values of y from 
corresponding values of x. (e regression equation is
y = . + .x

(e p-value for the regression model is smaller than 
., indicating the x-values are useful in explaining 
the y-values. Finally, based on this equation, we venture to 
predict the value of y corresponding to x = ., which is 
y = . + .(.) = ..
(e corresponding prediction interval is (., .).

All the computations we have done are correct, 
but considered from the point of view of appropriate 
statistical analysis, everything we have done is incorrect 
and misleading. Why is this not a useful analysis? 

The Story behind the Data
(ese observations are from a standard physics 
experiment in which a ball is thrown into the air and 
photographed with a strobe light. From multiple images 
of the ball in the photograph, we can find the height of 
the ball in meters (y-values) at time increments spaced 
. seconds apart (x-values). 

Figure  shows the  points corresponding to the 
data in Table  as solid dots—along with our useless 
regression line from above. (e open circles show 
what happened after each of six additional intervals 
of . seconds—data not recorded in the table or 
used here.

As soon as we know the story, we know the ball must 
eventually start to come down, and, thus, that it is not 
appropriate to use a linear model for height as a function 
of time. A linear function would correspond to an 
interesting alternate reality with no gravity: It would be 
a lot easier to launch rockets into space, but we would all 
have to live in caves—presumably wearing helmets—to 
keep from launching ourselves into space.

Story First, Analysis Second

Lesson Learned
Make sure you 
understand the 

story behind the 
data, then do the 

analysis—story first, 
analysis second.

FIGURE 1. Trajectory of the flight of a ball
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Using the correct regression on both x and  
x, we can estimate the height of the ball at . 
seconds to be about . meters, with a % 
prediction interval of (., .). (is agrees 
well with the points in the vicinity of x = . 
seconds, not used in this regression.  

Obs# 1 2 3 4 5 6  7 8 9 10

x  0.000 0.043 0.086 0.129 0.172 0.215 0.258 0.301 0.344 0.387

y 0.000 0.135 0.252 0.352  0.434 0.496 0.538 0.568 0.580 0.566

S
uppose someone gives us the data in Table , telling 
us the numbers represent  bivariate observations 
x and y, where y is the dependent variable. 

TABLE 1. 

+ S T A T I S T I C A L  S N A P S H O T 

ˆ

ˆ

ˆ



R  U  S I M U L A T I N G ?

O
ne of the classical datasets in the 
field of statistics resulted from 
very careful measurements of 

the heights of  students at a boarding 
school in India in the early s. Four 
measurements of each student’s height 
were taken in the morning and another 
four were taken in the eve ning. Table  
shows the average morning (AM) and evening 
(PM) heights for each student. Heights were 
measured in millimeters (mm). (ere are about 
. mm to the inch, so someone who is ’ ” tall 
would also be about , mm tall.
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Student AM PM Student AM PM
1 1728.75 1720.25 21 1688.75 1677.00
2 1538.25 1528.50 22 1688.75 1681.00
3 1462.25 1452.50 23 1620.75 1613.50
4 1782.50 1776.50 24 1679.00 1668.25
5 1671.00 1667.00 25 1557.25 1550.25
6 1581.75 1571.00 26 1704.50 1696.50
7 1673.75 1664.50 27 1632.75 1619.00
8 1721.75 1708.50 28 1587.00 1581.50
9 1646.50 1636.00 29 1598.75 1590.50
10 1793.75 1781.75 30 1592.25 1583.50
11 1825.25 1814.00 31 1719.50 1709.25
12 1801.50 1787.00 32 1807.50 1795.00
13 1742.50 1729.75 33 1624.00 1619.50
14 1720.75 1711.50 34 1705.25 1694.50
15 1728.25 1717.25 35 1692.75 1686.00
16 1753.75 1742.75 36 1795.25 1782.00
17 1725.50 1716.75 37 1643.50 1628.75
18 1598.00 1592.25 38 1677.25 1668.25
19 1756.25 1747.00 39 1647.75 1641.50
20 1674.00 1662.50 40 1620.00 1608.25

41 1727.50 1721.25

TABLE 1. Average Morning and Evening Heights of 41 Students

Shrinking Students,
BOOTSTRAPS

by Antonio Curtis and Bruce E. Trumbo

Poisoned Children, and 

Students’ Heights Decrease  
During the Day
A quick inspection of these measurements shows 
that every one of the  students measured 
taller in the morning than in the evening. So, 
if we are willing to consider these students as 
randomly chosen from some population, there 
is overwhelming evidence that people in that 
population tend to be taller in the morning. If 
morning and evening heights do not differ in the 
population, there is only one chance in  (more 
than a million million) that every difference would 
have the same sign. 

It turns out that similar decreases in height 
from morning to evening have been seen in many 
other groups of people. A likely explanation is that 
the shrinkage occurs mainly along the spine as the 
cartilage between vertebrae becomes compressed 
during the day.

ANTONIO CURTIS 
When he submitted this 
article, Antonio Curtis 
was a master’s student 
in statistics at California 
State University, East Bay. 
He is now a mathematics 
instructor at Riverside 
Community College. 
His statistical interests 
center on social and 
governmental statistics.
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Estimating the Amount of Shrinkage
If we compute the  differences between 
morning and evening measurements in Table , 
we find that these differences average about . 
mm, with a standard deviation of about ., 
and thus a standard error of ./√ = .. 
Assuming the data to be normally distributed, we 
find the % confidence interval to be (. mm, 
. mm). (is is based on . ± .(.), 
or . ± ., where . is the . percentile 
of student’s t distribution with  degrees 
of freedom. The normality assumption is 
discussed below.

In practical terms, this confidence interval—
centered at about  mm—indicates it ordinarily 
would not make sense to try to measure 
someone’s true height with more precision than 
about the nearest  mm, or  cm (between 
⅜" and ½"). Height varies by about that much 
during a day. 

Indeed, just at any one given time, it seems 
measurements cannot be reproducibly made  
within less than a few millimeters. For example, 
even though the measurements in Table  were 
done very carefully, the four measurements that 
averaged to . for Student  in the morning 
were , , , and . (e margin of 
error for estimating this student’s true morning 
height from these four measurements is about 
. mm. (is lack of precision is reflected in 
the margin of error of our confidence interval 
for the population mean shrinkage in height. 
But a much larger component of that margin of 
error arises from differences in the amount of 
shrinkage from one student to another.

Empirical Cumulative  
Distribution Functions

distribution of a random variable as the 
smoothed histogram of a large sample from a 
population with that distribution. So for a large 
sample, we can use a histogram to judge whether 
the data fit a particular density function. But 
this does not work so well for samples of a small 
or moderate size. For example, Figure  shows a 
histogram of the  height differences with the 

fitting normal distribution. (is best normal fit 

is not terrible, but density curves of some non-
normal shapes would fit at least as well.

By contrast, Figure  shows the empirical 
cumulative distribution function (ECDF) of 
these  differences, along with the theoretical 
cumulative distribution function (CDF) of 

chart showing the values of the  individual 
differences. Notice that the ECDF starts at  on the 
left and increases to  toward the right. (e ECDF 
has a jump of i/n at an observation value, where i 
is the number of tied observations at that value. It 
is relatively easy to see that there is a pretty good 

because of randomness, one cannot expect all the 
black dots of the ECDF to lie exactly on the smooth 
dotted CDF curve, but none of them lies far away. 

FIGURE 1. From their histogram, it is not clear how well 
the 41 height measurements fit a normal density function 
(dotted curve).

FIGURE 2. It is easy to see that the ECDF of the 41 
differences provides a reasonably good fit to the best-fitting 
normal CDF.
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(e ECDF contains exact information about 
the sample of  differences. But the histogram 
was made by sorting these  values into six 
fairly large “bins,” and so the histogram is based 
on information that is only approximate. For 
relatively small sample sizes, ECDFs work better 
than histograms in judging the goodness of fit to 
a particular distribution because ECDFs do not 
waste any information.

(e nonparametric bootstrap 
procedure is a computa tionally 
intensive method of estimation. 
It is based on all the available 
information, and it does not rely 
on assuming normality about the 
data, or that they even adhere to 
any other particular distributional 
family. (e bootstrap is based on 
the idea that, because the ECDF 
contains all the information in the sample, it is 
the best available imitation of the theoretical 
CDF. (is is true whether or not the CDF is 
normal. A sample must be of at least moderate 
size before the ECDF can be relied upon to give a 
good approximation of the CDF.

Specifically, the bootstrap procedure treats the 
n observed data values as a substitute population. 
We know for sure that the actual population 
contains these values, and we do not know for 
sure whether it can produce any other particular 
values. We take many bootstrap samples of size n 
from the substitute population. Sampling is done 
with replacement, which means data values can 
occur more than once in the bootstrap sample. 
From each bootstrap sample, we find the mean. 
(is gives us a simulated sample distribution of 
bootstrap means. Cutting off the top and bottom 
.% from this bootstrap distribution gives a 
% nonparametric bootstrap confidence interval.

Based on a bootstrap with , bootstrapped 
samples from among the  height differences, 
we obtain a % confidence interval (., .), 
which is just a little shorter than the t CI  
(., .) obtained above. Figure  shows the 

FIGURE 3. Here, the vertical axis of the ECDF plot has 
been transformed, so the theoretical CDF curve becomes a 
straight line.

A normal probability plot, based on an ECDF, 
often is easier to interpret than the ECDF, itself. 
(e idea in making a normal probability plot is 
to distort the vertical scale of the ECDF so the 
theoretical normal CDF becomes linear. Specifically, 
the transformation is the standard normal quantile 
function, which is the inverse of the standard 
normal CDF. (en, we can judge relatively easily 
whether the points of the distorted ECDF lie along 
a straight line, and it is not necessary to draw the 
CDF curve for reference. Figure  shows a normal 
probability plot of the  height differences. In 
Figure , we show the theoretical line, which is the 
straightened version of the CDF curve of Figure . 
In this particular case, the equation of the straight 
line is y = (d – .)/..

A Nonparametric Bootstrap  
Confidence Interval
Above, we used a t confidence interval (CI) to 
estimate the population mean difference in student 
heights between morning and evening. Provided 
the population is normally distributed, there is no 
loss of information if we summarize the data into 
just two numbers—the sample mean and sample 
standard deviation—to find the t confidence 
interval. (is CI is easy to compute, but if the data 
are not from a normal distribution, it may not give 
the best possible result.

FIGURE 4. Bootstrap distribution of differences in heights. 
The vertical dotted lines show the 95% bootstrap confidence 
interval.

Bradley Efron, a 
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Bootstrap confidence 
intervals were intro-
duced by Bradley Efron 
about 25 years ago as 
a way to use intensive 
computation in solving 
a variety of statistical 
estimation problems 
that would be difficult or 
impossible to solve ana-
lytically. During the last 
20 years—as comput-
ing power has become 
cheaper and more 
readily available—the 
bootstrap has become 
a standard method of 
assessing the accuracy of 
estimates.  

SPOTLIGHT
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histogram of the bootstrap distribution from 
this run. Because this is a simulation process, 
each run will give a slightly different histogram 
and CI; endpoints of the CI may differ slightly 
in the second decimal place. If the bootstrap 
distribution were not so nearly symmetrical, 
some adjustment might be necessary in the 
resulting confidence interval, but we will not 
discuss such adjustments here.

Because the height differences appear to be 
nearly normally distributed, the t confidence 
procedure correctly uses nearly all the 
information in the sample of 
 observations. (e bootstrap 
CI is a simulation procedure. 
While it requires no assumption 
of normality and uses all the 
information in the sample, its 
endpoints are subject to a small 
fluctuation from one run to 
another that decreases as the 
number of iterations in the 
simulation increases.

(e term “bootstrap” comes 
from the expression about 
pulling oneself up by one’s 
own bootstraps in the face of 
adversity. Here, the adversity 
would be ignorance of the 
distribution of the population, 
which implies ignorance of 
the distribution of the sample 
mean.

Lead Poisoning in Children
Now, we look at another study involving 
differences. But here, it does not seem 
reasonable to assume the differences are 
normally distributed.

manufactured using lead. Lead is a serious 
neurotoxin that is especially dangerous to 
young children. Although workers at the factory 
were told to take showers and change clothes 

and shoes before going home, the concern 
remained that lead dust might be transported 
from the factory to the home, where it could 
contaminate the children of the workers.

(irty-three children whose fathers work at the 
factory are the principal subjects of a study. Blood 
samples are taken from them, and the amount 
of lead in their blood is determined. But if lead is 
found in their blood, this does not necessarily mean 
it came from the battery factory or the bodies or 
clothing of their fathers. Many other sources of 
lead contamination exist—lead in water pipes and 
paint (applied before its use in paint was banned), 
for example.

As a control group, a “matching” child is found 
for each of the principal subjects. Matching is 
based on neighborhood (similar possibilities for 
environmental lead poisoning) and age (lead 
poisoning is cumulative over time). Children in 
the control group also are tested for blood levels 
of lead. For each of the  pairs of children, Table 

potentially “exposed” child and the “control” 

““The impact of the bootstrap has transcended both 
theory and applications. The bootstrap has shown us  
how to use the power of the computer and iterated  

calculations to go where theoretical calculations cannot, which 
introduces a different way of thinking about all of statistics.” 

- George Casella,  
introducing a recent collection of papers  

about the history and current importance of the bootstrap

child, along with the difference, exposed minus 
control. 

(e first thing to notice here is that, in the 
exposed group, there are some really serious 
cases of lead poisoning. Although no amount 
of lead is desirable, according to standard 

in bold in Table ) need medical treatment and 

immediately. 
Figure  shows a normal probability plot of 

the differ ences in blood lead levels. (e points 

Pair Exps Cont Diff Pair Exps Cont Diff
 1 38 16 22 17 15 24 -9
 2 23 18  5 18 10 13 -3
 3 41 18 23 19 45  9 36
 4 18 24 -6 20 39 14 25
 5 37 19 18 21 22 21  1
 6 36 11 25 22 35 19 16
 7 23 10 13 23 49  7 42
 8 62 15 47 24 48 18 30
 9 31 16 15 25 44 19 25
10 34 18 16 26 35 12 23
11 24 18  6 27 43 11 32
12 14 13  1 28 39 22 17
13 21 19  2 29 34 25  9
14 17 10  7 30 13 16 -3
15 16 16  0 31 73 13 60
16 20 16  4 32 25 11 14

33 27 13 14

TABLE 2. Lead Levels for Children Whose Fathers Work in an Industry Where Lead 
Is Used (Exps), for Children Selected as Matched Controls (Cont) and Differences 
(Diff)
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seem to fit a curve, rather than a straight line. 
In particular, the distribution seems to be skewed 
somewhat to the right. (e t confi dence interval 
procedure is fairly tolerant of moderate departures 
from normality, so the CI (., .) it produces is 
probably not grossly misleading. But, for these data, a 
nonparametric bootstrap CI seems a better choice.

(e bootstrap CI from one run of , 
iterations is (., .), which is shorter than  
the t interval. (e study that yielded the data 
in Table  also investigated the amount of lead 
exposure of workers and their adherence to the 
hygiene rules intended to prevent spread of lead 
dust from the workplace to home. (e children 
with the highest levels of lead tended to have 
fathers with both high exposure in the workplace 
and a lax attitude about the rules on showering and 
changing clothes.

(e R code used to make Figure  is shown in 
Figure . Although great amounts of computation 
are required, the structure of the program is 
straightforward.  

FIGURE 5. Normal probability plot of the differences in Table 
2. The pattern of points is noticeably nonlinear, indicating 
possible non-normality.

FIGURE 6. Bootstrap distribution of differences in lead levels 
and their confidence interval

FIGURE 7. R code for Figure 6. The code for Figure 4 is similar.

 dfr = c(22, 5, 23, -6, 18, 25, 13, 47, 15,
16,  6,  1, 2, 7, 0, 4, -9, -3, 36, 25,
 1, 16, 42, 30, 25, 23, 32, 17, 9, -3, 60,
14, 14)

m = 10000; n = length(dfr); d = numeric(m)
for (i in 1:m) {d[i]= mean(sample(dfr, n, repl=T)) }

hist(d, xlab=“Differences”)
bci = quantile(d, c(.025, .975)); bci
abline(v=bci, lty=“dotted”, lwd=2)

C
H

AL

LENGES

1. Use the code in Figure 7 to do your own boot-
strap confidence interval on the height differences.  
Is your result similar?

2. Generate mixed normal data with n = 40 using
set.seed(1)
x = c(rnorm(20, 100, 10), rnorm(20, 130, 15))

The population is not normal. Why not? Make a his-
togram with hist(x) and a normal probability plot 
with qqnorm(x). Can you detect non-normality from 
the data?

3. Show that the population mean in Challenge 2 is  
µ = 120. Make a 95% t CI and a 95% nonparamet-
ric bootstrap CI for µ. Is the true value µ = 120 
included in both intervals?



A
s it is possible that the U.S. attorney 
general or his designates might be 
listening to my phone conversations, 

I suppose I should say at the outset that I was 
really only joking when I said I was considering 
turning to a life of crime. Actually, I had been 
watching a lot of cable television when I noticed 
there were various crimes of a larcenous nature 
going unsolved—many perhaps committed by 
noncollege graduates. I also figured that, should 
it come down to it, having to live on a teacher’s 
salary would bolster my case for an insanity plea, 
especially if I got a jury of peers. 

My first firm hint that a life of crime might 
not be the way to go came the other day when I 
stayed awake long enough to watch the end of 
the movie “Bonnie and Clyde.” Wow, was that 
a lesson learned! Apparently, after every crime 
spree, one is forced to buy a new car or at least 
foot the bill for some significant repairs. (is is 
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a serious problem, as I really like my hybrid and I 
am told I will not be able to get the next one with 
a standard transmission. Even if they still have 
standard transmissions, I could not afford one on 
a teacher’s salary.

But what really is going to keep me on the 
straight and narrow, crime-wise, is this book I 
just stumbled across by David Lucy, Introduction 
to Statistics for Forensic Scientists (ISFS
teachers of statistics already have a full-blown 
appreciation for the power of statistics. And I, 
like all statistics teachers, have used the analogy 
of jury decisions to Type I and Type II errors 
when testing hypotheses. But, in all my years of 

I never actually saw any statistical arguments 
presented. It seemed nothing vaguely scientific 
went beyond the practice of the classical Greeks 
(i.e., consulting oracles). (Well, they do not 



call them oracles 
anymore; the 
current politically 
correct term is 
“expert witnesses.”) 
I remembered Perry 
Mason got all his 
clients off, and my 
chances seemed 
about even on “Law 

again! My eyes were 
really opened by 
ISFS when I read the 

historical, philosophical, and logical discussion of 
the nature of forensic evidence—and the place of 
statistics within the whole scheme. In my mind’s 
eye, I imagined lots of budding forensic types 
reading ISFS. It now seems to me a life of crime 
might be a seriously risky venture.

(is book was written for future forensic 
scientists, and I do have to admit there were parts 
that caused my eyes to glaze over. For example, 
where the forensic types might be pardoned 
for skipping over the details of a derivation of 
Bayes’ (eorem, I am hoping my understanding 
of the plot of ISFS was not interrupted during 
my deer-in-the-headlight stages when I would 
read passages such as “(e rhomboid fossa is a 
groove which sometimes occurs on one end of 
the clavicle as a result of the attachment of the 
rhomboid ligament…” (Apparently, the point 
is that this rhomboid thing helps tell whether 
skeletal remains are male or female. What I 
learned, however, is that, in the unlikely event 
I stumble on a skeleton, the secret of its gender 
will be safe from my prying.) I was actually able 

ISSUE 47 STATS    25

to follow the discussion 
of DNA and its role in 

identifying individuals from 
evidence left at 

crime scenes and in establishing 
paternity. I was really in my comfort 
zone when the discussion got around 
to the evidential value of trouser 
fibers, shoe types, and firearms. 
So the statistics part was not all I 
understood while reading this.

What really scared me out of an 
anticipated life of crime, though, is 
the decidedly Bayesian character of 
the analyses presented in ISFS. As 
a confirmed frequentist and merely 
budding criminal, I believed that 
until I committed a number of crimes 
all looking alike—the number  
sticks in my mind—the power of statistics could 
not be brought to bear against me. However, I now 
understand that strong evidential arguments can 
be marshaled against me, even if I commit fewer 
than two crimes. (ose Bayesians really know how 
to hurt a guy who is just trying to make a criminal 
living. 

So, in closing, I would like to thank Lucy for 
writing this tome. His scribbles have prevented me 
from embarking on what, with my luck, would have 
been a short life of crime and subsequent long 
stretch behind bars. With a heavy heart and a light 
bank account, but with possession of the moral 
high ground, I will stick to my life of teaching 
mathematics and statistics. I am sure my hybrid 
will love me for it.  

THOMAS BAYES 
(1702–1761) was 
a British math-
ematician and 
Presbyterian minis-
ter. He is credited 
with setting forth 
Bayes’ Theorem, 

which can be used to 
update a prior probability 
assessment to a posterior 
probability based on newly 
observed evidence.

SPOTLIGHT

““My eyes were really 
opened by Introduction to  

Statistics for Forensic  
Scientists when I read the 

historical, philosophical, and 
logical discussion of the nature 

of forensic evidence—and  
the place of statistics  

within the whole scheme.”
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Solution to STAT DOKU puzzle on Page 8



W
  hen confronted with this 
puzzle’s question, many people 
respond by saying they could 

create  pairs of data such that the 
correlation coefficient, r, will turn out 
equal to +.. (at may or may not be 
true. It depends on the distributional 
shape of the two sets of numbers.

In order for you to be able to produce 
an r equal to +., the distributional 
shape of the X numbers must be identical 
to the distributional shape of the Y 
numbers. (e two sets of numbers do 
not need to be normally distributed; 
however, for r to “max out” at +., both 
sets of numbers must have the same 
distributional shape. (e distributions can 
be positively skewed, negatively skewed, 
rectangular, bimodal, or anything else, as 
long as they are the same.

If the X numbers have a distributional 
shape that is different from the 
distributional shape of the Y numbers, 
then r has a maximum possible value 
that is smaller than +.. Consider, for 
example, the following data where the 
X and Y numbers have the same range, 
mean, and standard deviation:

X: , , , , , , , , ,  
Y: , , , , , , , , , 
Regardless of how you might create 

 pairs of data using these numbers, 
you will not be able to get r to equal 
+.. (at is because the X numbers are 
positively skewed and the Y numbers are 
negatively skewed. Because the skewness 
in each dataset is minor, the maximum 
value of r is quite high: ±..

If the two sets of numbers being 
correlated have distributional shapes 
that are radically different, the maximum 
positive value of r may be far away from 
the widely presumed limit of +.. To 
illustrate, consider these data:

X: , , , , , , , , , 
Y: , , , , , , , , , 
Here, the maximum positive value 

of r is +.. So, we can see that the 
maximum correlation between two sets 
of numbers can be much less than + (or 
much greater than –), if the distributions 
of the variables differ greatly in shape. In 
such situations, a researcher should use 
Spearman’s rank correlation (rs), instead 
of Pearson’s correlation (r).  
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Can   r  
Go?

How High  
KARL PEARSON 
(1857–1936) made 
seminal contribu-
tions in statistics 
and laid much of the 
foundation for the 
statistical analysis 
we use today. He 

developed Pearson’s product-
moment correlation coef-
ficient (r), commonly called 
the “correlation coefficient.” 
It measures the tendency for 
two variables, X and Y, to 
increase or decrease togeth-
er. In other words, it mea-
sures their co-relation[ship]. 
He also developed Pearson’s 
chi-square test, a statistical 
test of significance for  
categorical data.

CHARLES 
SPEARMAN 
(1863–1945) was a 
pioneer in several 
statistical areas. He 
is best-known for 
his development 
of Spearman’s rank 
correlation coef-

ficient (rs)—a nonparametric 
measure of correlation. Also 
know as “Spearman’s rho,” 
it uses the ranks of the data, 
rather than the data values. 
It is, therefore, the correla-
tion between the ranks of the 
Xs and the ranks of the Ys in 
each pair of numbers. While 
Pearson’s (r) requires data 
measured on an interval or 
ratio scale, Spearman’s (rs) 
can be used for variables mea-
sured on an ordinal scale.

SPOTLIGHT

SPOTLIGHT
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CALLING ALL STUDENTS OF STATISTICS

STATS: The Magazine for Students of Statistics is interested in publishing articles that 
illustrate the many uses of statistics to enhance our understanding of the world 
around us. We are looking for engaging topics that inform, enlighten, and motivate 
readers, such as:

STATISTICS IN EVERYTHING from sports to 
medicine to engineering

“STATISTICS IN THE NEWS,” discussing 
current events that involve statistics and 
statistical analyses

STATISTICS ON THE INTERNET, covering 
new web sites with statistical resources such 
as datasets, programs, and examples

INTERVIEWS WITH PRACTICING 
STATISTICIANS working on intriguing and 
fascinating problems 

STATISTICIANS IN HISTORY and the classic 
problems they studied

HOW TO USE particular probability 
distributions in statistical analyses

EXAMINING SURPRISING EVENTS and 
asking, “What are the chances?” and then 
providing the answers

REVIEWS OF BOOKS about statistics that are 
not textbooks 

STUDENT PROJECTS using statistics to 
answer interesting research questions in 
creative ways

Send a  
description of your 

concepts for feature
articles to Editor  

Paul J. Fields
pjfields@byu.edu
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3An Interview with Sallie Keller-
McNulty. To learn more about the 

American Statistical Association, visit 
www.amstat.org.

6A Permutation Test of the Challenger 
O-Ring Data. (e data on the 

Challenger disaster can be found in 
Chapters , , and  of !e Statistical 
Sleuth, by Fred L. Ramsey and Daniel W. 
Schafer, (omson Learning, Inc., .

To learn more about permutation 
tests, see Chapter  of Introduction to 
Modern Nonparametric Statistics, by 
James J. Higgins, (omson Learning, 
Inc., .

8  To learn about Latin 
square designs, see Chapter  of 

Statistics for Experimenters: Design, 
Innovation, and Discovery, by George E. 
P. Box, J. Stuart Hunter, and William G. 
Hunter, John Wiley & Sons, Inc., .

9Can You See the Trees for the Forest? 
To review the calculation of variance, 

see Chapter  of !e Basic Practice of 
Statistics, by David S. Moore, W. H. 
Freeman and Company, .

12Which Came First, the Chicken or 
the Egg? (e CBS News Video, “Was 

the Chicken or Egg st?,” was shown on 
November , . It can be found at  
www.cbsnews.com. 

For a comprehensive look at the 
United States poultry industry, read 
“Briefing Rooms: Poultry and Eggs,” 
Economic Research Service, United States 
Department of Agriculture, . www.
ers.usda.gov/briefing/poultry.

An outline of the broiler and eggs 
production cycles can be found in “U.S. 
Broiler and Egg Production Cycles,” 
National Agricultural Statistical Service, 
United States Department of Agriculture, 
September . 

References and Additional Reading List

'e references for each article in this issue of STATS are included in the listing below, along with suggestions for additional 
reading on related topics. 'e page numbers for the corresponding articles are shown in blue.

For more on time series models 
in econometrics, see Chapter  of 
Undergraduate Econometrics, by R. 
Carter Hill, William E. Griffiths and 
George C. Judge, John Wiley & Sons, 
Inc., . 

For more on vector autoregression, 
see Chapter  of Applied Time Series 
Econometrics, edited by Helmut 
Luetkepohl, Peter C. Phillips, and 
Markus Kraetzig, Cambridge University 
Press, .

The National Chicken Council web 
site is at www.nationalchickencouncil.com.

17How High Can r Go? An extensive 
investigation of the range of the 

correlation coefficient is reported in 
“Evaluating Correlation with Proper 
Bounds,” by Weichung Joseph Shih and 
Wei-Min Huang, Biometrics , -
, December .

A biography on Karl Pearson’s life and 
work is Karl Pearson: the Scientific Life in 
a Statistical Age, by (eodore M. Porter, 
Princeton University Press, .

For more on Spearman rank 
correlation, see Chapter  of Introduction 
to Modern Nonparametric Statistics, by 
James J. Higgins, (omson Learning, 
Inc., .

18Story First, Analysis Second. (e 
trajectory data were digitized from 

a photograph in Physics for Scientists and 
Engineers, by Paul A. Tipler, Worth, .

19Shrinking Students, Poisoned 
Children, and Bootstraps. For more 

about the rationale of the bootstrap and 
additional kinds of applications, see the 
review article, “Bootstrap Methods for 
Standard Errors, Confidence Intervals, 

Accuracy,” by Bradley Efron and Rob 
J. Tibshirani, Statistical Science, Vol. , 
-, .

For an overview of the bootstrap 
method, see An Introduction to the 
Bootstrap, Vol. , Bradley Efron and Rob 

J. Tibshirani, CRC Press, .
(e quote from George Casella is 

from Statistical Science, Vol. , , May 
—an issue devoted to the “Silver 
Anniversary of the Bootstrap.”

A comprehensive guide to resampling 
is presented in Resampling Methods: a 
Practical Guide to Data Analysis, by Phillip 
I. Good, Springer, .

To learn more about permutation 
tests, see Chapter  of Introduction to 
Modern Nonparametric Statistics, by 
James J. Higgins, (omson Learning, 
Inc., .

(e data on heights are from  
D. N. Majumdar and C. R. Rao’s, 
“Bengal Anthropometric Survey, : 
a Statistical Study,” Sankhya, the Indian 
Journal of Statistics, Vol. , -, 
.

 (e data on lead exposure are 
from “Lead Absorption in Children of 
Employees in a Lead-Related Industry,” 
by David F. Morton et al., American 
Journal of Epidemiology, Vol. ,  
-, .

 Both the heights and lead exposure 
datasets are discussed at length in 
Learning Statistics with Real Data: Hands 
on Data Analysis, by Bruce E. Trumbo, 
(omson Learning, Inc., .

(e R code for these analyses is 
available on the STATS web site, www.
amstat.org/publications/stats.

24Bonnie and Clyde Meet Bayesian 
Statistics. (e book that motivated 

this article is Introduction to Statistics for 
Forensic Scientists, by David Lucy, John 
Wiley & Sons, Inc., .

(e basic concepts and applications 
of Bayesian statistics are presented in 
Introduction to Bayesian Statistics, by 
William M. Bolstad, John Wiley & Sons, 
Inc., .

For more about that ‘magic’ number, 
n=, see “Ask STATS” in STATS, Issue  
, .
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