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Dear STATS Readers:

First, I am very happy to announce the winners of 
the STATS Face the Facts Contest. We asked readers 
to identify the cover photo that appeared on issue 20 
of STATS (Fall, 1997). The following entrants correctly 
guessed that the photo was of Cleveland, Ohio: Chris 
Andrews, University of California, Berkeley, CA; Rick 
Cornez, University of Redlands, Redlands, CA; Yan 
Liu, The George Washington University, Washington, 
DC; Lisa Rybicki, Cleveland Clinic Foundation, 
Cleveland, OH; Tom Short, Villanova University, 
Villanova, PA; and Steve Wang, The University of 
Chicago, Chicago, IL. Additional entrants guessed that 
the photo was of Chicago, Pittsburgh, and Cincinnati: 
Andrea Hofer, University of Vienna, Vienna, Austria; 
Todd Schwartz, University of North Carolina at Chapel 
Hill, Chapel Hill, NC; and Don Reed, Georgia State 
University, Atlanta, GA. Each entrant received a prize 
of a one-time use panoramic camera! We thank Linda 
Quinn for submitting the photo. It also appears on the 
Cleveland Chapter Web Site with the URL, http://www.
bio.ri.ccf.org/docs/ASA/cleveasa.html.

The three feature articles in this issue have a 
common theme: the application of statistics to 
scientific problems. In “The Role of Statistics in 
Scientific Endeavor,” Graham McLaren (no relation) 
and Maria Carrasco-Aquino discuss statistics and its 
role in scientific research within the framework of the 
scientific method. In this expository article, they 
explain the logical steps that enable researchers to 
translate a scientific hypothesis to a statistical 
hypothesis, the role of statistical inference and the 
cyclic nature of scientific investigations.

In pursuit of the answers to his scientific 
questions, Gaden Robinson, an entomologist, left his 
desk at The Natural History Museum in London. He 
traveled to the valley of the Rampayoh river in the 
rainforest of Brunei in northern Borneo. The scientific 
purpose of his trip was to determine the diversity of 
moth species living in the rainforest. In his article, 
“Bugs, Hollow Curves and Species-diversity Indexes,” 
Robinson gives us fascinating details of his scientific 
research, such as setting up a base-camp with 
hammocks, work- and cooking areas, and vapour 
lamps. We can imagine him listening to the hum of 
noisy cicadas while trapping and classifying moth 
specimens. Returning to London to analyze the data, 
he now explains the role of the logarithmic series in 
determining the distribution of number of individual 
moths among species.

In our third feature article, Curtis Stratman 
describes the independent research project that he 
developed during his high school science research 
class at Jefferson City High School in Jefferson City, 
Missouri. In his project, “An Evolutionary Model for 
the Optimization of a Maze,” Stratman drew on ideas 
from his high school classes in mathematics, biology, 
and psychology. Stratman combined machine learning 
techniques with the genetic algorithm, a method that 
imitates the process of DNA recombination in sexual 
reproduction, to devise a technique for finding the 
optimal route through a maze. This article is the first 
one published in STATS that has been written by a 
high school student.

In this issue, we hear from Karen Kafadar, 
Professor in the Department of Mathematics at the 
University of Colorado-Denver. Kafadar describes 
statistical jobs that she has held in government, 
industry, and academe. In keeping with the theme of 
the issue, Kafadar tells about her work on scientific 
studies in the Statistical Engineering Division at the 
National Bureau of Standards (now the National 
Institute of Standards and Technology), Hewlett 
Packard, the National Cancer Institute, and the 
University of Colorado-Denver. Clearly a talented 
statistician, Kafadar shows her ability to apply statistics 
to a wide range of scientific problems.

We are very privileged to hear of the Life and 
Hard Times of J. Stuart Hunter. He describes his 
educational pathway leading to an appointment at 
Princeton. As an engineer and a statistician, Hunter 
says, “In many ways we are acolytes to the scientific 
method, lighting the way from conjecture to data 
acquisition, and through the pathways of analysis 
helping in the creation of new ideas and repetition of 
the learning cycle.” He advises, “I can definitely declare 
that anyone with an interest in a science, or medicine, 
or engineering, or even politics who has an interest in 
handling data will find a career in statistics rewarding.”

Yours in Search of Scientific Truth,

Christine McLaren

Editor's Column
STATISTICS and SCIENCE



■ 1. Introduction
Scientific endeavor is a continuous cycle of 

clarification of the unknown through the 
development of theories and the generation of 
knowledge through the verification or modification 
of those theories. The process of generating, 
testing, modifying and verifying scientific theories 
is called the scientific method; and statistics, which 
is defined as the science and art of collecting, 
organizing, analyzing and interpreting data, is an 
indispensable instrument in this process. As such, 
statistics plays a vital role in scientific endeavor: it 
makes a major contribution to the efficient design 
of scientific investigations and to the applicability 
and validity of conclusions which are generated. 

In this paper, statistics and its role in scientific 
research is discussed within the framework of the 
scientific method. Emphasis is placed on the logic 
and philosophy behind statistical techniques so 
that researchers can better understand their 
application and so that statisticians can identify 
their role in science. 

■ 2. The Scientific Method
Although the techniques of investigation vary 

considerably from one scientific discipline to 
another, the scientific method represents a 
philosophy which is common to all. It is defined 
by the cycle of clarification of the unknown and 

The Role of Statistics in Scientific 
Endeavor

generation of new knowledge through the 
continual search for improvement of tentative 
theories used to explain physical phenomena. 

Example 1: An application of the scientific 
method.

Let us recall the controlled breeding studies of 
Gregor Mendel in 1865. The details of his research 
endeavor to discover the basic rules of heredity 
provide a good example of the scientific method. 

Scientific Knowledge
Mendel began with the scientific knowledge that a 
cross between round-seeded peas and wrinkled-
seeded ones produced round-seeded peas which 
no longer bred true among themselves. 

Scientific Hypothesis
Mendel continued by developing the following 
theory to explain this observation. When two peas, 
one with round and one with wrinkled seeds, are 
crossed, they each donate to their offspring one 
particle determining the trait. One of the particles, 
say round, dominates the other so that in an 
individual with one of each type, the seeds will be 
round.

Statistical Hypothesis
The next stage was to consider the consequences 
of the theory in a practical setting. When the 
round-wrinkled crosses are bred among 
themselves about three quarters of their offspring 
should be round and one quarter wrinkled. 

Experiment
This led to the design of an effective experiment. 
Breed the crosses and count the round and 
wrinkled offspring. 
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Example 2: Defining a 
scientific hypothesis.

Suppose we have the 
following observation in 
our field: Rice leaves are 
ye l l ow ing  in  young , 
growing plants. (Real life 
problem)  So we ask: 
Why? What could be the 
cause?

We seek answers to 
this question by f irst 
examining what we know 
about the problem of 
yellowing leaves. Previous 
studies on this issue can 
give some indication as to 
the probable cause(s) and 
consequences. Experience 
and literature indicate that 
yellowing of leaves in 
young plants may result 
from nitrogen (N) deficient 
s o i l  a n d  c a n  c a u s e 
c o n s i d e r a b l e  y i e l d 
reduction if not corrected. 
(Scientific Knowledge) 

Hence, we contend that the yellowing of the leaves 
is due to soil N deficiency. (Scientific Hypothesis)

In this step we closely examine the problem 
and its manifestation in the context of current 
knowledge and experience. The purpose of this 
analytical reasoning is to formulate a tentative 
hypothesis that would explain the facts. This is the 
most important but least formalized step in the 
whole process.

Here are some suggestions for developing a 
satisfactory scientific hypothesis. It should:
•  be formed in a way that is closely related to the 

problem to be solved,
•  suggest or provide an answer to the particular 

problem which generated the inquiry,
• provide direction for the research,
• be stated as simply as possible, and
•be capable of verification or rejection.

In the path (b) → (c), the researcher tries to 
determine what would happen under a specific set 
of conditions, if the scientific hypothesis is true. 
This is basically a clarification and often a 
simplification of the question or problem. We call 
these consequences of the scientific hypothesis, the 
statistical hypothesis. 

It is the statistical hypothesis that is verifiable 
and forms the basis for setting up the appropriate 
experiment or survey design. Analysis of the 
resulting data using statistical inference leads to 

Data and Analysis
The data are the observed frequencies of the round 
and wrinkled offspring. Analysis was done to 
check whether or not they agree with the statistical 
hypothesis.

New Scientific Knowledge
By inference to other traits and other organisms, 
the theory of Mendelian inheritance began to be 
developed. Later observations showed that the 
simple diallel law was not always adequate and so 
started the cycle of scientific endeavor to refine the 
laws of inheritance.

This example illustrates the principal steps in 
the scientific method which applies very generally 
to scientific endeavor. The researcher, faced with 
real life problems or questions, wishes to find 
solutions or answers through the scientific method. 
As shown in Figure 1, the method involves the 
following logical processes—analytical reasoning, 
deductive reasoning, statistical inference, and 
inductive reasoning.

In the first step of the scientific method, (a) → 
(b), the question or problem is reduced to a 
scientific hypothesis. This is a theory about the 
state of nature giving rise to the phenomena being 
studied. This is the theory which the researcher 
wants to investigate.

Figure 1. The Scientific Method
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acceptance or rejection of the statistical hypothesis. 
The reasoning at this stage must be clear and 
critical if reliable conclusions are to be drawn from 
the experiment. The type of reasoning involved in 
this step of the cycle, which leads from the general 
to the particular, is referred to as deductive 
reasoning.

Example 3: Translating a scientific 
hypothesis to a statistical hypothesis.

If we deduce the observable consequences of 
the scientific hypothesis following our example 2, 
the statistical hypothesis could be stated as follows:

If the scientific hypothesis regarding nitrogen 
deficiency is true then measured levels of N in the 
soil should be below critical levels indicated in the 
literature. (Statistical Hypothesis) 

Let us now move on to the next steps in 
Figure 1. The path from (c) → (d) → (e) involves 
the experimental process, i.e., the designing and 
implementing of experiments or surveys to 
examine the predicted consequences. It is at this 
stage that statistics has a major role to play in the 
process by providing the logical and probabilistic 
framework for evaluating the tentative hypothesis. 
On the basis of the collected data, the researcher 
decides on the acceptability of the theory using 
statistical analysis and inference, (d) → (e).

The paths (e) → (b) and 
(e)  →  ( f )  lead to  the 
genera t ion  o f  a  new 
scientific knowledge. When 
the hypothesis and data fail to 
agree, the researcher is led to 
revise the former, path (e) → 
(b). However, when the data 
and hypothes i s  are  in 
agreement, the generality of 
the new scientific knowledge 
is explored in order to arrive 
at some general principles 
that will apply to a wide class 
of situations represented by 
the experimental conditions, 
(e) → (f). This method of 
reasoning, from the specific to 
the general, is referred to as 
inductive reasoning. It is from 
this new generally acceptable 
scientific knowledge that we 
hope to find answers to the 
real  l i fe  problems that 
motivated the cycle in the 
first place.

■ 3.  Role of Statistics 

in the Scientific Method
Statistics has a major role to play in all stages 

of the scientific method. This is because it is 
involved with the definition and evaluation of 
hypotheses through the collection and analysis of 
data. In the paths (a) → (b) and (e) → (b) of 
analytical and inductive reasoning, the methods of 
descriptive statistics have their role to play. They 
provide powerful tools for suggesting questions to 
ask and formulating hypotheses. This is 
particularly useful in the study of large data sets, 
especially those routinely collected without specific 
research purposes in mind. Such data should also 
be examined for indications as to the hypothesis or 
theoretical model underlying the process which 
produced the data. Data examination may include 
exploratory techniques such as tabulations, 
summary descriptions, graphical analysis, and 
cluster analysis. 

Statisticians play an invaluable role in this 
exploratory stage by working closely with 
researchers. A basic understanding of the subject 
area and excellent communication skills are 
important for the success of this collaboration.

The experimental process, paths (c) → (d) → 
(e), of the scientific method is intimately involved 
with many areas of statistics. A description of the 

Figure 2. Statistics in the Experimental Process.
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statistical methods and thought processes in this 
part of the scientific method is depicted in Figure 2 
and will now be discussed.

After clearly formulating the statistical 
hypothesis ,  relevant and valid data are 
accumulated from historical records, sample 
surveys or experiments in order to test the given 
hypotheses and provide indications for possible 
alternatives. Statistics provides the researcher with 
an array of methodologies to help in the design of 
an efficient and cost-effective data collection 
scheme which also ensures the accuracy, 
unbiasedness, and quality of the data.

In the area of measurement process the 
statistician's technical skills are needed. Close 
collaboration with researchers in the subject area 
and communication of statistical principles are also 
crucial.

The principles of quality control may prove 
to be of valuable assistance during and after data 
collection. Data ought to be routinely checked for 
the presence of errors, biases and outliers. The 
relevance of the data to the hypotheses under study 
also needs to be continually checked.

S t a t i s t i c s  p l a y s  a  c r u c i a l  ro l e  i n 
experimentation. Even in the best planned 
experiments, we cannot control all the factors that 
affect our observations and we can rarely make 
measurements without some noise or error from 
the measurement process. Hence, we have to make 
inferences based on imprecise sample data. To be 
of practical use, these uncertain inferences must be 
accompanied by probability statements expressing 
the degree of confidence the researcher has in the 
conclusions. To make certain that such probability 
statements will be possible, the experiments should 
be designed in accordance with the principles of 
statistical experimental design. These principles, 
together with the statistical hypothesis under study, 
dictate a statistical model relating the data to the 
statistical hypothesis through probability theory. 

In other words, data have no meaning in 
themselves; they are meaningful only in relation to 
a statistical model of the phenomenon being 
studied. The interpretation of a set of data would 
be different, depending on what model was 
thought appropriate. In practice, some basic 
knowledge of the phenomenon under study is 
usually available to allow the researcher to specify a 
plausible statistical model.

Example 4: The statistical model in 
Mendel's breeding studies.

Let us consider Mendel's work as discussed in 
example 1. If plants with round seeds are crossed 
with ones having wrinkled seeds and the resulting 

hybrids are inter-mated to give what are known as 
the F2 progeny, then the statistical hypothesis is 
that these will segregate in the ratio 1:3, that is, 
one quarter will produce rounds seeds and three 
quarters wrinkled. The experimental design was to 
randomly observe a number of F2 plants and count 
the two classes. The statistical model is that any 
randomly observed F2 plant has some probability, 
p, of producing round seeds so that the number of 
plants producing round seeds in our sample 
follows a binomial distribution. The statistical 
hypothesis is then expressed in terms of this model 
by taking p = 1/4.

The stage is now set for answering the 
researchers' queries. The process of drawing 
inferences or conclusions from the observed data 
will then make use of methods of statistical 
inference. These include methods for estimation, 
prediction, hypothesis testing and decision-making 
based on observed data and a specified statistical 
model. It is the application of probability theory in 
these methods that leads to confidence in precision 
of estimates or predictions and consistency in 
rejection or acceptance of hypotheses.

For example, if we assume our statistical 
hypothesis to be true, then our statistical model, 
with inferential methods, will allow evaluation of 
the probability of observing data which is less 
supportive of the statistical hypothesis than the 
probability of the data actually observed. If this 
probability is very small, we will conclude that 
either the statistical hypothesis, or the statistical 
model is wrong. If we find no evidence to indicate 
that the model is wrong, we reject the statistical 
hypothesis.

Example 5: The statistical analysis of 
Mendel's experiment.

If Mendel observed 100 F2 plants in his 
experiment, the binomial model and the statistical 
hypothesis (p = 1/4) indicate that we expect about 
25 to produce round seeds. If he observed 20 
plants with round seeds, this deviates by five 
plants from what we expect. We need to ask 
whether this deviation is plausible under the 
statistical hypothesis. To do this we use the 
statistical model to calculate the probability of 
observing data that are less supportive of the 
statistical hypothesis. Clearly, results with fewer 
than 20 plants with round seeds are less 
supportive of the hypothesis p = 1/4 than the data 
actually observed; they tend to indicate that p < 
1/4. Similarly, results which are more than 30 are 
less supportive of the statistical hypothesis, since 
they also deviate from our expectation by more 
than 5 plants and indicate that p > 1/4. Hence, we 
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three levels of N, two would not be sufficient. But 
in the same spirit of contingency planning that 
applied to the leaf N, we should have a fourth level 
to check the adequacy of our convex curve theory.

In a field trial (Experiment), we may then 
choose N rates 0, 50, 100, and 150 kg N/ha as the 
treatments and we should observe the response of 
grain yield to N (Statistical Hypothesis). The 
experimental design is to randomly allocate the 
treatments to the plots in block considering the 
direction of the field's fertility gradient, say with 
five replications (Randomized Complete Block 
Design). 

The statistical model is that mean yield 
response to N follows a quadratic form with 
normally distributed errors. This model allows us 
to test the hypothesis about the convex response 
and then estimate the optimum N rate.

Data on grain yield will be obtained after 
harvesting and the yield of the four treatments will 
be compared. Suppose that the observed quadratic 
model indicates that the highest grain yield would 
come from 112 kg N/ha, then we postulate 
(Inference) that, with the given environmental 
conditions, 112 kg N/ha is likely to give optimal 
grain yield, and that this rate should correct the 
yellowing of the leaves.

■ 5. Conclusions
Scientific endeavor has been the principal 

method of generation of knowledge since the 
Renaissance and is likely to continue as such for 
centuries to come. We have seen how this is based 
on a scientific method or philosophy, and that 
statistics is central to this method.

Statisticians, therefore, have a responsibility of 
custodianship over  this  phi losophy.  An 
understanding of it, and of the role of Statistics in 
it, is crucial to knowing what we have to do, 
whether we are theoretical statisticians developing 
new techniques or applied statisticians using them.

The most important function of an applied 
statistician is in communicating to scientists this 
philosophy, and the role of statistics in it. To do 
this, we need to understand scientific subject areas 
and bring a statistical perspective to each step in 
the scientific process through analytical reasoning, 
deduction, statistical inference and induction.

use the binomial probability distribution with N = 
100 and p = 1/4 to compute the probability of 
observing less than 20 or more than 30 plants with 
round seeds. This probability is about 0.25 so the 
data are not at all unexpected and we can accept 
the hypothesis p = 1/4.

If we reject the statistical hypothesis, then the 
scientific hypothesis, which is supposed to hold 
more generally than in the specific experiment, is 
a l so  unl ike ly  to  be  t rue  and must  be 
re-considered.

■ 4.  The Cyclic Nature of Scientific 
Investigation

An important aspect of the scientific method is 
its cyclic nature. Knowledge and understanding are 
accumulated through a never-ending cycle of 
scientific endeavor. For example, the theory of 
Mendelian inheritance soon required refinement to 
handle the inheritance of linked characters, and is 
still being refined today to accommodate more and 
more complex situations. We need to anticipate 
these cycles in our research planning, never 
viewing an experiment in isolation and always 
measuring or observing phenomena that can point 
the way to the next cycle. Sample problems can 
become very complicated during the inductive 
reasoning stage when we try to generalize from 
specific results.

Example 6: Refinement of knowledge in leaf 
yellowing.

Let us consider again examples 2 and 3 where 
we are interested in correcting the yellowing of the 
rice leaves. Suppose that the data we obtained from 
the soil samples indicated that the field is in fact N 
deficient. We conclude that this is the reason for 
the yellowing of the leaves. Still we may ask: 

What is the degree of deficiency or how much N 
are we going to apply ?

To answer this question, we could try to 
determine the nitrogen rate to apply in our field by 
going back to rice literature which indicates that 
nitrogen rate is soil-and season-specific (What we 
know). If we have no recommendation for the 
prevailing environmental conditions, we want to 
zero in on the N rate to apply to the field that will 
give us optimum yield. The literature indicates that 
response will be a convex curve with an optimum 
between 50 and 150 kg N/ha (Scientific 
Hypothesis).

The exact form of our scientific hypothesis has 
important consequences for the design of our 
experiment. If the simple estimation of a convex 
curve and its optimum is sufficient, we only need 
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■ 1. Introduction
The valley of the Rampayoh river in Brunei is a 

military training area. It is also one of the few 
remaining undisturbed tracts of lowland rainforest 
in northern Borneo. The helicopters that brought 
troops and four entomologists to the valley are 
long gone. The eight Gurkhas have established a 
comfortable base-camp of hammocks, work- and 
cooking areas. The insect scientists have been busy 
elsewhere and the cleared patch of ground that 
served as a helipad, surrounded by 150-foot high 
trees, is now dominated by a framework of poles 
supporting what appears to be a cinema screen but 
which is in fact a large white bed-sheet. As dusk 
falls the noise of crickets, cicadas and frogs 
becomes deafening. In this cacophony a regular 
beat develops as the generator warms up. The faint 
blue flicker in front of the sheet becomes a brilliant 
glow in just two minutes as the mercury vapour 
lamp reaches full power. Dazzled insects spiral in 
to the light and settle on the sheet. Chaos 
develops: the air is full of insects, hornets run up 
and down the sheet, biologists duck and weave, 
avoiding hornets, to search out their quarry, gently 
enticing tiny moths into glass tubes. Beard-owners 
curse more than the clean-shaven.

The following morning the chaos is reduced to 
order. The catch is humanely killed and pinned. 
Wings are spread to expose details of colour and 
structure to make identification as easy as possible. 
Specimens are packed into lightweight boxes ready 
for the journey back to London. Our prime 
purpose is taxonomic—that is, to provide 
specimens for use in research into the classification 
and relationships of these moths. Put another way, 
our insects on pins will eventually tell us what 
species live in this rainforest, how they are related, 
and what evolutionary route they took to get where 
they are today. 

A glance at the boxes of prepared specimens 
reveals a feature that is especially remarkable to a 
biologist from a temperate region—practically no 
two specimens are the same. There are hundreds of 
species, for this is one of the biologically most 
diverse habitats on earth—a haven of species-
richness. 

Some of our samples are taken not with 
taxonomy as the prime objective but in an attempt 
to measure that richness. They are samples that are 
as random as we can make them and all specimens 
are collected. These will provide the context for 
our work and give us some idea of the potential 
number of species that we would have to deal with 
in a complete inventory of the fauna. Perhaps more 
importantly, measurements of species-richness will 
allow us to compare and contrast the faunas of 
different localities and measure the effect of habitat 
disturbance on those faunas. It will allow us also to 
examine the phenomenology of species-richness 
and the way that it apparently varies with time and 
sampling technique. Back in the laboratory each 
moth in our samples will be labelled and the 
individuals sorted into species.

Months later, this sorting shows us what we 
would perhaps expect to see: many species are 
represented by just a single individual, fewer by two 
individuals, fewer again by three and so on. There 
are many “rare” species and comparatively few 
common ones. The ranked series of the distribution 
of individuals among species with increasing 
frequency is a hollow curve (Figure 1; Table 1).
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Bugs, Hollow Curves and Species-
diversity Indexes

Gaden S. Robinson, DSc, entomologist at The 
Natural History Museum, London, England, is a 
specialist in the biology and taxonomy of small moths. 
His recent publications include A Field Guide to the 
Smaller Moths of South-East Asia, a monograph on the 
clothes-moth family in Australia, and several papers on 
tropical moth diversity. He is currently developing a 
worldwide database of caterpillar hostplants.

In camp—segregating species from samples collected 
the previous night. The “laboratory bench,” 
constructed by the Gurkhas, is made from short 
poles. Awnings in the background shelter individual 
hammocks—the sleeping quarters.
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■ 2. History
The distribution of units among groups in the 

natural world has been a topic for investigation for 
more than 70 years. Hollow curve distributions 
apply universally in nature. They have been 
demonstrated in populations of plants, insects, 
birds, mammals and micro-organisms. But they do 
not apply just to the distribution of individuals 
among species, but also to higher ranking levels in 
biological classification—the distribution of 
species among genera and the distribution of 
genera among families. Indeed, hollow curves are 
universal—the frequency distribution of words in 
this article is a hollow curve (Williams, 1970).

Willis (1922) examined the frequency 
distribution of species among genera and 
recognised that here was mathematical regularity. 
He proposed the hyperbolic series as the best fit to 
the data he examined. But the fit was poor.

In the late 1930s, C.B. Williams embarked on 
an ambitious programme of nightly light-trapping 
of insects, notably moths, at Rothamsted 
Experimental Station in southern Britain. His 
design of trap, essentially a light above a funnel 
that led into a large jar charged with killing-agent, 
took samples that were cumulatively large—
13,000-40,000 specimens per year. His trapping 
program continues today, using the same trap 
design in the same location, and provides now by 
far the world’s longest and largest biodiversity 
time-series data set. Williams noted (1937) that 
many features of his data were best analysed by 
treating insect numbers as a series of geometric 
relationships, but description and modelling of the 
hollow curve eluded him for several more years. 
In 1942, A.S. Corbet reopened the problem with 
the examination of the relationship between 
individuals and species in a collection (Corbet’s) of 
Malayan butterflies. Corbet’s collection was of 
course badly biased—butterfly collectors take a 
series of the common species then give up and 
concentrate on hunting rarities—but Corbet’s 
paper (1942) aroused Williams’ interest and he in 
turn was able to enlist the help of Sir Ronald 
Fisher in looking at not only Corbet’s data but also 
the first 4 years’ light-trapping results from 
Rothamsted—16,000 moths (individuals) in 240 
groups (species). In a joint paper, Fisher, Corbet 
and Williams (1943) suggested that the observed 
frequency distribution could be fitted by a 
logarithmic series rather than a hyperbolic series. 
Diversity was suddenly an entity quantifiable 
using the parameter of the logarithmic series 
distribution.

■ 3. Diversity and its quantification
The diversity referred to here is now termed 

“alpha-diversity.” It is a measure of the species-
richness of a particular group of organisms 
pertaining in a particular habitat or locality at a 
particular time. There are two ways to measure it. 
One is to enumerate all the species present, while 
the second is to measure the diversity of a sample 
or series of samples and extrapolate from these to 
provide meaningful comparisons and/or repeatable 
observations and/or testable hypotheses. The 
practical implications of the first alternative are 
staggering: it has taken an army of naturalists over 
200 years to enumerate fully Britain’s Lepidoptera 
(moth and butterfly) fauna of 2500 species. In 
diverse tropical ecosystems full species inventories 
are clearly impractical except possibly for some 
vertebrate groups. Extrapolation from samples, 
despite the bias inherent in any sampling 
technique for whole organisms, is realistic.

Table 1. Distribution of individuals among species in 
a pooled ten-day light-trapped sample of small moths 
(Microlepidoptera) from lowland rainforest in Brunei. 
Total individuals (N)  1230; total species (S)  571. 
The hypothetical log-series distribution (  414) is 
shown for comparison.

Species with: Observed Expected (log series)

1 individual 320 309
2 individuals 116 116
3 individuals 49 58
4 individuals 33 32
5 individuals 15 20
6 individuals 19 12
7 individuals 6 8
8 individuals 4 5
9 individuals 2 3
10 individuals 0 3
Residual Species 7 6
(>10 individuals) at 11,  
13, 15, 16, 17, 19, 27

Figure 1. Distribution of individuals among species 
(data from sample in Table 1) - the classic “hollow 
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At its simplest, for a sample containing a given 
number of individuals (say, moths), the diversity 
will be higher the greater the number of groups 
(species) in the sample. But we cannot take moth-
samples at light that are conveniently all the same 
size. In order to be able to understand, compare 
and manipulate samples we need a measure of the 
species-richness in each that is independent of 
sample size - an index of diversity. The parameter 
of the logarithmic series is just this—it is now 
known as Williams’ alpha () or, by some authors, 
Fisher’s alpha.

Diversity has now come to mean many things 
to many people and its measurement and 
importance are areas of considerable debate (e.g., 
Patil and Taille, 1982). In fact, the logarithmic 
series has withstood the test of time and the 
buffeting of critics remarkably well. Williams 
(1944, 1947, 1964) showed that it applied to an 
enormously wide range of samples of different 
organisms of different sizes and with different life-
styles taken over different periods of time. Critical 
testing by Wolda (1981, 1983) and Taylor (1978) 
provided additional justification. But Williams’ 
alpha is not the only index of diversity and the 
reader should consult Wolda’s papers and 
Magurran (1988) for a balanced view. My personal 
justification for using the log series and alpha still 
is the robust claim of the non-mathematician that 
“if it ain’t broke, don’t fix it” (Robinson and Tuck, 
1996).

■ 4. The logarithmic series
So what is the logarithmic series and what is 

alpha? Given the crucial elements N, the number of 
individuals, and S, the number of species in the 
sample, the applicable log series can be calculated. 
The log series has particular properties that make it 
especially useful as a descriptor of samples. Firstly, 
it is relatively simple to generate log series and 
manipulate them using a computer. Secondly, 
populations (i.e., mixed-species assemblages) of 
different sizes can be generated using statistical 

estimates derived from samples so that samples can 
be “magnified” or “rarefied” and hypotheses 
explored. Thirdly, the parameter of the series, 
alpha (), relates N and S directly and is a sample-
size independent diversity index. Any particular 
log series is defined by the parameter  and 
knowledge of N and S, or by any combination of 
any two. The three are related by the formula:

S   (loge (1(N/))) (1)

Alpha is most easily computed, given N and S, 
by iteration and substitution in this formula. 
Alternatively the tables given by Hayek & Buzas 
(1997) may be used. In the case of our moths from 
Borneo, the number of species represented by 1, 2, 
3 .... r individuals is given by the elements in the 
series:

 (N/(N)), ((N/(N))2/2),  
((N/(Na))3/3), etc. (2)

Fourthly, random samples of  log series are 
themselves a log series with the same  as the 
parent assemblage (although, of course, N and S 
will be different). The converse of this last point is 
that any sample must be from a putative mixed-
species assemblage that has the same diversity () 
as the sample.

The large sample variance of  is given by:

V  3(((N)2 loge((2N)/(N))N)/ 
((SNSN)2)) (3)

Sample diversity with 95% confidence limits is 
expressed by   2 V .

■ 5. Applying the logarithmic series
We have used  to compare species-richness 

of small moths (Microlepidoptera and Pyraloidea) 
in different habitat types using “snapshot” samples 
accumulated over periods of 4-14 nights. During 
our work in Borneo we compared moth diversity 
in three distinct and different forest types: lowland 
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Table 2. Diversity of smaller moths in three 
different forest types in Borneo

 N S 
 (number of (number of (diversity)
  individuals) species)

Brunei–lowland  1230 571 414  39 
rainforest
Sabah–montane  513 268 226  35 
rainforest
Brunei–mangrove  870 253 120  13 
forest

Gurkha infantryman gets an introduction to jungle 
entomology.
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lowland site in Borneo we estimated (Robinson and 
Tuck, 1993) that two years’ trapping would yield 
about 160,000 specimens comprising at least 3750 
species of moths. In practice this is an 
underestimate. If nightly trap-samples are pooled 
the diversity of the cumulative sample rises and 
over the first few days of trapping this rise is quite 
rapid (Table 3; Figure 2). This effect is caused by 
habitat heterogeneity. Variation in climate from 
night to night affects flight range and direction; 
metaphorically speaking our samples in the first 
few days of a trapping programme are drawn 
progressively from more and more tiles in the 
environmental mosaic. In the longer term there are 
seasonal changes that add to diversity.

The logarithmic series can also be used to 
compare samples in terms of their species-
composition (i.e., the number of species shared 
between pairs of samples). Obviously, if  differs 
substantially between two samples they must be 
from different “parent” populations. But if  is 
similar, do these samples represent the same or 
different assemblages? The [expected] number of 
species shared between a pair of samples is simple 
to calculate—add the individuals in the two, then 
use the formula (1) to calculate the expected 
number of species (S3) in a theoretically combined 
sample. The predicted number of shared species is 
given by S1    S2    S3 where S1 and S2 are the 
[observed] numbers of species in the two samples. 
But the calculation of the variance in this operation 
eluded us. So we resorted to empiricism. The 
observed field situation can be mimicked by 
generating a large log series population within the 
computer with the same  as observed in the field; 
bootstrap random sampling of individuals from 
this artificial population is carried out to produce a 
series of replicate pairs of samples of the same size 
as the field samples. The number of shared species 
is counted for each pair, and mean and standard 
deviation is calculated.

We used this technique to compare samples 
taken 1 km apart in lowland rainforest in Borneo 
and also compared the species composition 
between mangrove forest, lowland rainforest and 
montane rainforest (Table 4). As might be 
expected, there is very close similarity between the 
two lowland samples but very little between other 
pairs. This confirmed what was obvious by 
inspection—that the insect faunas of the different 
major forest types in Borneo are radically different 
in terms of their species composition. Closer 
inspection of the data from the two lowland sites 
showed that the discrepancy in species-
composition was accounted for by the smallest 
moths (the Microlepidoptera) that could be 
assumed to have limited dispersive powers. When 

rainforest, montane rainforest and mangrove 
(swamp) forest (Table 2). Moth caterpillars, or 
most moth caterpillars, eat green leaves and are 
more or less host-specific. So it might be expected 
that floristically poor habitats, such as mangrove 
swamp (with perhaps 10-15 tree species in a 
hectare), have a less diverse moth fauna than a 
habitat rich in plant species such as lowland 
rainforest (with 230 tree species in one hectare). 
Indeed this is the case, and the moth fauna of 
montane rainforest, less rich in plant species than 
the lowland forest, is also less diverse. In fact the 
mangrove figure shown here is artificially high—
our samples were from the landward edge of the 
swamp and are “contaminated” by species from 
nearby secondary forest. More recent samples from 
traps that were “buried” deep in the swamp show a 
much lower diversity of about 25.

Using the log series, it is simple to extrapolate 
and derive estimates of the total number of species 
that might be inventoried in, say, two years’ 
sampling in a particular habitat. The observed 
value of  is substituted in the formula above along 
with a reasonable estimate for the number of 
individuals (specimens   N) that could be 
collected in the space of two years. For our 
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Table 3. Change in diversity with sample 
accumulation (moths at light - lowland rainforest)

Days N S 

1 164 130 290  109
1-2 263 194 334  90
1-3 383 252 320  64
1-4 522 313 330  53
1-5 641 368 360  51
1-6 749 403 355  45
1-7 894 464 389  45
1-8 982 492 393  43
1-9 1056 506 381  39
1-10 1230 571 414  39

Figure 2. Change in diversity with sample 
accumulation (moths at light, lowland rainforest)
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we analysed the data for the comparatively 
strongly-flighted pyraloid moths that comprised 
about half the sample, the observed shared species 
(103) matched the expected (100  13).

We suspect that, in the mosaic of a tropical 
forest, cumulative samples from two adjacent sites 
will show convergence in terms of their species-
composition (the observed/expected ratio of shared 
species will increase) as time progresses. The rate 
of this convergence and the change in rate with the 
distance between the sampling-sites may be one 
way in which we can quantify the spatial 
accumulation of biotic diversity—“beta diversity.” 
But this is a project for the future.

■ 6. Spooky?
We have moved on from the rainforest: our 

latest project is very different—compiling a 
worldwide database of caterpillar hostplants—what 
eats what. As this project progressed one old, 
familiar feature began to emerge. Many caterpillar 
species eat just one genus of hostplant, rather 
fewer eat two, fewer eat three, and so on. The most 
comprehensive data available to us at present is for 
the caterpillars of North American moths. The 
frequency distribution of host specificity for these 
is a hollow curve (Table 5; Figure 3) and one that 
is a remarkably good fit to the logarithmic series. 

■ 7. Why a logarithmic series?
Although logarithmic series are found so 

abundantly in biological systems the mechanism 
underlying their universality is by no means clear. 
Hollow curves that approximate to log series may 
be empirically generated by growing “trees” whose 
branch tips bifurcate randomly through time: the 
“tree” is subjected to regular random “killing” of 
the growing tips. The model is that of evolution 
and extinction. The tree is “sampled” by sectioning 
at a fixed level in time; the number of living tips 
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Table 4. Comparison of samples of 
Microlepidoptera from different forest types in 
terms of shared species (“master population” 
sampled has alpha equal to that of the two samples 
combined); the expected number is that expected 
were the two samples drawn from the same 
population

Shared Species:
Sites Compared 
(forest type) Observed Expected O/E 

Lowland 1  Lowland 2 151 175  20 0.86
(1 km apart)
Lowland  Montane 27 223  13 0.12 
(180 km apart)
Lowland  Mangrove 37 299  17 0.12 
(50 km apart)
Mangrove  Montane 2 86  6 0.02 

Table 5. Frequency distribution of number of genera 
of hostplants eaten by 1183 genera of North American 
Lepidoptera (excluding butterflies). N = 9759; S = 
1183. The hypothetical log-series distribution ( = 
352.4) is shown for comparison.

 Number of  Number of Expected 
 plant genera used  caterpillar genera (log series) 
 as foodplants (observed)

 1 342 340
 2 184 164
 3 110 105
 4 84 77
 5 54 59
 6 41 47
 7 47 40
 8 33 33
 9 13 28
 10 22 25
 11 14 22
 12 16 19
 13 21 17
 14 22 15
 15 8 14
 16 12 13
 17 7 11
 18 9 10
 19 5 10
 20 14 8
 21-30 54 58
 31-40 28 29
 >40 43 39

Figure 3. Frequency distribution of number of 
genera of hostplants used by 1183 host genera of 
North American Lepidoptera (excluding butterflies) 
with hypothetical logarithmic series shown for 
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subtended by each cut stem is counted. The 
resulting frequency distribution of extant tips 
among stems approximates to a logarithmic series. 
So it may be that the logarithmic series and similar 
hollow curves are a summation of the effect of 
random extinction points superimposed upon a 
similarly random pattern of binary development or 
binary “choices.”

Projects in biology invariably generate more 
questions than they answer. Investigating 
frequency distributions that generate hollow curves 
to which diversity indexes may be related is no 
exception to this version of Murphy’s Law. 
Meanwhile, when you next clean the bug bodies 
out of a light-fitting, pause a moment and reflect 
that you are almost certainly throwing a 
logarithmic series into the trash.
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R.A. Fisher observed that if successive, 
independent, equal samples are taken from 
homogeneous material, then N (no. of individuals 
observed) is distributed as a Poisson (m) whose 
parameter m is the number expected. If the material 
is heterogeneous, or if samples are of unequal sizes, 
we have a mixture of Poisson distributions with 
differing values of m, that is mi. He showed that an 
important extension of this Poisson theory arises 
when the mi have a known distribution. Since the 
values of the mi’s are positive, the simplest 
distribution that can be assumed is of Eulerian form. 
He then showed that the resultant series is related to 
the negative binomial expansion. However, in its 
application to the number of individuals from S 
different species, the observed N in any sample 
cannot be 0. Consequently he derived the log series 
as the limiting case of the negative binomial.

Entomologist Gaden Robinson pinning and packing 
moths in the Brunei rainforest.
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■ 1. Introduction

1.1 Background

I am a class of 1997 graduate of Jefferson City 
High School in Jefferson City, Missouri. The school 
offers a class that meets one day a week in the 
mornings where the students prepare independent 
research projects to be presented at local science 
fairs, including the International Science and 
Engineering Fair and the Missouri Academy of 
Sciences. When thinking about a subject, my long 
time interest in computers led me to consider a 
project in machine learning. During a college visit 
at the University of Missouri-Rolla I came into 
contact with Cihan Dagli and he agreed to be my 
mentor. The classic concept of running mice 
through mazes was something I wanted to try 
reproducing on a computer. He said I might want 
to consider genetic algorithms. This paper is the 
result of my work of combining computers and 
biology by way of mathematics.

Ideas from many of my high school classes 
have gone into this project. Mathematics, biology, 
and psychology all serve as foundations. Several 
times I found an idea for this project during a daily 
lecture in one of these classes. The applications of 
this project extend even further, into fields such as 
physics and engineering. This project would not 
have been possible for me without a solid and 
diverse background to work from.

1.2 Problem Solving

Some problem situations cannot be solved 
using a definite procedure. An example of this 
would be finding the solution to maze games. We 
can watch little children as they attempt to find the 

solution. In the beginning they have no knowledge 
on how to approach the problem. As they gain 
experience, they learn strategies that help them 
find the path from the beginning to the end of the 
maze.

This is the same approach machine learning 
takes toward such problems. Instead of finding one 
exact answer to the problem by completing a series 
of defined steps, strategies are programmed so that 
a near optimal answer is found by trial and error. 
Knowledge and success are built upon to find 
increasingly better solutions to the problem. The 
goal is not necessarily to find the one exact answer, 
but rather to find one of the best. In this paper I 
will describe the approach I took to solving a maze 
problem. Starting with the idea of using the genetic 
algorithm, which is based on probabilities, I 
attempted to apply it to finding the shortest route 
through the maze and then tested the model’s 
performance.

■ 2. The Genetic Algorithm

2.1 The Natural Basis for the Genetic 
Algorithm

The way strategies are developed is by 
attempting to reproduce natural processes. For 
example, neural networks use a structure similar to 
how scientists believe the neurons in the brain 
might process information. These networks are 
then designed specifically to perform tasks such as 
facial recognition, speech recognition, predicting 
stock market trends, etc. It is important to note 
that these models are not meant to duplicate 
exactly what occurs in nature or to prove how a 
natural system works. This research simply uses 
nature as a basis for ideas and the models are 
developed further with mathematics.

The  gene t i c  a l gor i thm uses  s exua l 
reproduction as its basis. Every living organism 
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contains DNA which is composed of chromosomes 
which in themselves are composed of individual 
genes. These genes produce the characteristics that 
an individual organism has, for example blue eyes. 
For organisms that reproduce sexually, the 
offspring receives a combination of genes from 
both of its parents.

Charles Darwin theorized that evolution is a 
result of sexual reproduction. In nature individuals 
compete against one another in their environment 
for survival. The concept of survival of the fittest 
states that those individuals with the best 
characteristics tend to live while the others die. 
The living individuals produce offspring, which 
through sexual reproduction have a new and 
unique combination of characteristics from their 
parents. This generation of offspring also compete 
against each other for survival and produce 
offspring of their own. As the process of 
improvement versus extinction continues, 
populations of organisms containing increasingly 
better qualities are formed.

2.2 Holland's Genetic Algoritm

The genetic algorithm was invented by John 
Holland (1975). He derived a mathematical proof, 
called the Schemata Theorem, which serves as the 
fundamental theorem of genetic algorithms. This 
theorem is too extensive to describe in this paper, 
but for those interested I would recommend 
reading Goldberg (1989) and also Jennison and 
Sheehan (1995). Both are available at many 
university libraries.

Holland designed the genetic algorithm to 
imitate the process of sexual reproduction and 
natural evolution. Each organism, or individual, 
has a single chromosome which is represented as a 
string of characters, each character being analogous 
to a single gene. An initial population is generated 
randomly to ensure no initial bias is present. This 
is referred to as generation 0. Each individual is 
then placed into the “environment” where its 
fitness value is determined. Fitness is a numerical 
value that represents the individual’s ability to 
survive and produce offspring in its environment. 
Once these values are computed for each 
individual, the population of individuals 
reproduces by way of the genetic algorithm which 
follows rules that are similar to those that natural 
DNA follows in sexual reproduction. This gives us 
generation 1. This process, calculating fitness and 
reproducing, is repeated until a specified 
generation number is met. It is hoped that as the 
individuals that are best-fit pass their qualities on 
to  the  next  genera t ion through sexual 
reproduction, the population as a whole will evolve 
toward the desired solution.

The simplest form of the genetic algorithm 
contains three steps: reproduction, crossover, and 
mutation. Each is designed in such a way as to 
imitate the process of DNA recombination in 
sexual reproduction. In reproduction it is decided 
which individuals will produce offspring for the 
next generation. The probability of a single 
individual being selected is proportional to its 
fitness value. Selections are made with replacement 
so one individual may be copied into the mating 
pool more than once. Individuals are chosen until 
the size of the mating pool equals the original 
population size.

Crossover recombines the chromosomes to 
form new individuals. Each individual in the 
mating pool is paired with one other. A value 
called the crossover probability is determined by 
the designer of the model. It is determined which 
pairs will undergo crossover based on this 
probability. For example, if the crossover 
probability is set at 60%, then about six out of 
every ten pairs will undergo crossover. Pairs not 
selected are unaltered during crossover. For 
selected pairs, a split point within the chromosome 
is randomly selected. The characters to the right of 
the split point of each chromosome are simply 
swapped with those of its pair. An example of 
crossover is shown in Figure 1.

Before Split Point  5 After 
11111111  11111000 
00000000  00000111

Mutations are made to the population in order 
to introduce new information. This is done to keep 
the genetic algorithm from getting into a rut, so to 
speak. Perhaps all the individuals containing a key 
characteristic died out because the other 
characteristics they contained provided them with 
poor fitness. It is hoped mutations will reintroduce 
this material. With traditional binary strings 
mutation is done by changing a 0 to a 1 and vice 
versa. The characters selected for mutation are based 
on the mutational probability, another value 
determined by the designer of the model. If the 
mutational probability is set at 1%, then about one 
out of every one hundred characters will be mutated.

■ 3. The Maze Problem

3.1 Application of the Genetic Algorithm

So how can these ideas be used to solve a 
problem? That was the question I had to answer. I 
was able to research up to this point, but 

Figure 1. An example of crossover.



everything from here was up to me to figure out. 
Somehow I had to make the basic elements 
represent something within the problem situation 
where the individual’s chromosome represented a 
possible solution to the problem and its fitness was 
the measure of that solution’s value.

I chose to have the chromosome represent a 
path. It was a string of base-4 numbers (i.e. 
01230130213203...) because there are four 
directions of movement in 2- dimensional space. 
Each character represented a direction of 
movement. 0 was up, 1 was right, 2 was down, 
and 3 was left. The chromosome was a series of 
single steps that when read sequentially from left to 
right guided the individual through the maze. 

The method I devised for calculating fitness 
was the hardest step for me in the process of 
designing this model. The reason for this is 
because a maze is typically thought of as a visual 
image, not something that can be represented as a 
simple mathematical function. My first attempt was 
to simply count the number of steps each 
individual took before reaching the ending point 
and subtract that number from the length of the 
chromosome so higher numbers would indicate 
better performance. The problem with this method 
was that almost none of the initial population ever 
found the ending point and therefore had fitness 
values of 0. I then decided fitness would have to be 
calculated as an individual value for each step and 
then those values combined into a single number.

The maze was divided in grid fashion. Each 
occupiable position was assigned an xy-coordinate. 
The top left corner was the coordinate (1,1). X 
values increased as you moved to the right. Y 
values increased as you move downward, opposite 
that of the traditional Cartesian coordinate system.

The first factor I considered important was the 
distance the individual was from the ending point. 
There needed to be a value to subtract from as the 
distance to the ending point decreased so that 
fitness increased as the individual approached the 
ending point. I set up a ratio of the distance 
between the current position of the individual and 
the ending point as compared to the distance 
between the starting point and the ending point. 
Instead of using straight line distance I used a 

simple difference in x plus the difference in y to 
calculate the distance. This is sometimes referred to 
as taxicab geometry and was valid in this model 
since the individual could not move in a diagonal 
path. Since this value would always be less than 
one when the individual was closer to the ending 
point than the starting point was to the ending 
point, the value to subtract from was one. Note 
that this factor can return a negative value. Also 
note that the individual did not move after 
reaching the end-point. The remaining steps’ 
values were calculated with the individual on the 
ending point. The formula for this factor is

1  

XE  XC  YE  YC

XE  XS  YE  YS 

 (1)
where XE and YE  X and Y Coordinates of  
  Ending Point,
 XS and YS  X and Y Coordinates of  
  Starting Point, and
 XC and YC  Current X and Y Coordinates

The other factor I considered important was 
how fast the individual approached the ending 
point. The early steps are more important to 
optimize because there is no point in optimizing 
the last twenty steps when the first twenty are 
wasted. For this factor I set up another ratio, this 
time with the step number compared to the length 
of the chromosome. This factor should decrease 
with each step; and since this ratio will never be 
greater than one, the ratio was subtracted from 
one. The formula for this factor is

1  

Step


LChrom  1 
 (2)

where Step  Current Chromosome Position 
  {1, 2, 3, …, LChrom}, and
 LChrom  Chromosome Length

The factors in (1) and (2) were multiplied 
together to give the formula used for calculating 
the value of each step. The values returned for each 
step were then summed. This value was then 
divided by the best possible value achievable if 
there were no walls within the maze. This 
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
K  1

K  1  
1  

K


LChrom  11  

XE  XS  YE  YS  K

XE  XS  YE  YS    

LChrom

K  K  
1  

K


LChrom  1 
 

(3)
 where K  XE  XS  YE  YS,
  LChrom  Chromosome Length,
  XE and YE  X and Y Coordinates of Ending Point, and
  XS and YS  X and Y Coordinates of Starting Point



ASA STATS #21  ■  WINTER 1998     17

maximum value was calculated using the formula:
When this value was multiplied by 100, this 

final fitness value was the percent efficiency of the 
individual. Any individual whose final fitness value 
was less than 0 was assigned a fitness value of 0. 
This process for calculating fitness provided the 
genetic algorithm with the information it needed to 
evolve the population in such a way as to find an 
optimal path. We must look at the goal for this 
model and then examine how it must be achieved. 
Since the goal was to find the shortest route 
possible between the starting and ending points 
within the maze, it is obvious to see the role that 
the distance factor played in the fitness calculation. 
The shorter the route taken, the higher the fitness 
value. Therefore during the reproduction step of 
the genetic algorithm the individuals with shorter 
paths were more likely to be chosen. To 
understand how the speed factor influenced the 
process we must consider the process of how the 
problem must be solved. Since the value of every 
move was dependent upon every move that 
preceded it, the first moves had to be optimized as 
early as possible. Otherwise if the last moves had 
been optimized and then an earlier value was 
changed, those moves might no longer be 
applicable. By placing a higher weight on the first 
moves, the speed factor caused them to converge 
earlier.

3.2 Mutations

Since the chromosome is composed of base-4 
numbers, the mutation step of the genetic 
algorithm could not simply swap 0s and 1s. I 
chose instead to swap 0s with 2s and 1s with 3s.

3.3 Other Learning Strategies

I chose to incorporate two additional learning 
routines in this model. The first was operant 
conditioning. Operant conditioning is defined as 
the conditioning that results from one’s actions and 
the consequences they cause (McMahon et al., 
1990). Obviously the model would be more 
efficient if the individuals did not waste their time 
attempting to move through the walls. If live 
creatures were used, such as mice, one might 
electrify the walls in order to condition them. 
Eventually they would stop making the attempt. To 
represent this learning in a mathematical model, I 
wrote a routine to simply remove every character 
in the chromosome that caused no movement. All 
the characters to the right of that location were 
then shifted to the left by one position and the end 
of the chromosome was regenerated randomly to 
preserve its original length.

The second routine was cognitive learning. 

Many animals have shown the use of strategies for 
exploring a maze without tracing the same territory 
more than once (Olton, 1978, 1979). I did not 
want to allow the individual to make a move that 
returned it to the position that it had previously 
left; in other words, not letting it make a U-turn. 
This was done by not allowing a move to the right 
to be followed by a move to the left or vice-versa 
and the same with upward and downward. To 
accomplish this the values 0 (up) and 2 (down) 
along with the values 1 (right) and 3 (left) were not 
allowed adjacent to each other within the 
chromosome. When an occurrence of these values 
being adjacent was found, both characters were 
removed. As in the above routine, the characters to 
the right of that location were shifted and the end 
of the chromosome was regenerated randomly.

Both routines assisted the genetic algorithm by 
removing noise from the data, but the second 
routine incidentally had an even more significant 
effect. It drastically reduced the dimensions of the 
search. Without the routine any character in the 
chromosome could be any of four values. The total 
number of possible chromosomes was therefore 
4(Chromosome Length). With the routine the first 
character could still be any of four values but the 
subsequent characters could only be one of three 
values. For example, if the first character were a 0, 
then the next character could be a 0, 1, or 3 but 
not a 2. The permutations were therefore reduced 
to 4*3(Chromosome Length - 1) .

These routines also increased the role of 
mutation. Instead of just altering a single character 

Figure 2. The maze.



in the chromosome, such a change could cause 
several characters to be removed by these routines. 
The other characters on the chromosome would 
also be shifted to a new location earlier on the 
chromosome. A single mutation therefore could 
incidentally result in drastic change in the path 
taken by the mutated individual.

■ 4. Testing the Model
I personally drew the maze shown in Figure 2. 

The starting point is represented as a square and the 
ending point as a circle. Note that there is not one 
single solution like mazes found in game books. 
The number of possible solutions increases with 

every turn. Therefore our goal was not to find the 
only path but rather one of the shortest paths 
possible from the starting point to the ending point.

Table 1 shows an example run of this model 
through five generations. I arbitrarily selected the 
values 50 for population size and 50 for 
chromosome length. Goldberg (1989) suggested 
the values 60% for crossover probability and the 
reciprocal of the population size (in this case 2%) 
for mutational probability. By glancing at the best 
chromosomes of the progressing generations, one 
can see that individuals were being optimized 
beginning with the first moves and then a few 
more following moves in each successive 
generation. This follows the design of the model. 

One can also see by 
looking at the maximum 
fitness values that in this 
example the population 
w a s  v e r y  q u i c k  t o 
approach a near optimal 
path. (Recall that the 
maximum fitness value 
attainable is 100).

Figure 3 shows the 
p a t h  t a k e n  b y  t h e 
i n d i v i d u a l  f r o m 
generation 0 with the 
maximum fitness. This is 
the generation where all 
the individuals  were 
created randomly. The 
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Figure 3. The path taken by the best individual from 
generation 0.

Figure 4. The path taken by the best individual from 
generation 5.

Table 1. Summary of example run.

 Fitness

Generation Best Chromosome Minimum Maximum Average

0 111222222211000333010112212 0.00 46.04 20.04 
 22100333032322233012123
1 111221100111122210333212230 0.00 56.85 33.73 
 01122230030103011030322
2 111221100111222112111232230 5.62 75.56 38.30 
 11000112321032332111222
3 111221100111222122233211223 11.20 77.76 44.84 
 23301223301012210301032
4 111221100111222122221001211 15.80 81.24 47.90 
 22223211121232301030011
5 111221100111222122221232111 0.00 85.64 49.82 
 22323010300110103300333
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triangle in Figure 3 denotes the individual’s 
stopping point. It is likely that the individual in 
Figure 3 received the maximum fitness for that 
generation because of its good beginning path. 
Those values after all were weighted the highest. 
This individual did not reach the end because it 
ran out of steps on the chromosome, in this case 
50. Figure 4 shows the best individual from 
generation 5. Notice that this individual reached 
the ending point. This path is a near optimal one. 

To assure this was not a one time incident I 
tested the model in 250 separate runs, letting the 
population evolve through 50 generations in every 
run instead of just 5 generations. The histogram of 
the maximum fitness values of the 250 runs is 
shown in Figure 5. The mean of these values is 
85.82 with a standard deviation of 2.56. This mean 
is higher than the fitness value of the individual 
shown in figure 4. This means that on average they 
found a path even more optimal than the one 
shown. Based on this observation and the small 
variation in fitness values, (that is, the model rarely 
had trouble finding a path with fitness less than 
80), I therefore concluded that this model was 
successful in optimizing the given maze.

■ 5. Conclusion
This project does not prove anything about 

genetics or evolution. It is simply a model which 
finds an optimal route through a maze. But this 
concept does have many real world uses besides 
playing games. By putting weights on certain paths 

of the maze, routes could be 
o p t i m i z e d  b y  s p e e d , 
distance, or cost.  This 
would be useful for drivers 
or engineers planning street 
routes. The model could be 
simply modified to optimize 
3-dimensional mazes by 
changing the chromosome 
to base-6 numbers. This 
would be useful when 
planning the wiring or 
piping of a building. In fact 
an inf ini te  number of 
dimensions could be added 
by increasing the base by 
two for each additional 
dimension. The implications 
of that are beyond my 
imagination.
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Figure 5. Histogram of the maximum fitness values.
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Whe n  ou r 
editor Christine 
McLaren asked if 
I would write a 
review of my rites 
of passage into 
t h e  w o r l d  o f 
s tat i s t ic ians,  I 
quickly agreed. I 
enjoy reminiscing 
a n d  t h e r e  i s 
always the chance 
someone might 
be interested.

I n  h i g h 
school I was the 
youngest in my 
entire class and 
on graduat ion 
day in 1940 I turned 17. Being the youngest has its 
disadvantages, forget athletics, but if you are eager 
you overcompensate. So, I was active as a debater 
(won the state championship for boys), was the 
year book editor and busy in many school clubs. 
My grades were OK, but never great. I was good in 
math, but far from the best. I aspired to become a 
lawyer or a CPA (certified public accountant), but 
financial circumstances dominated any immediate 
considerations of college. My first job was with the 
Prudential Insurance Company as a mail-boy. For 
over a year I delivered messages and closely 
watched the lawyers and accountants at work. 
Frankly what they did day in and day out didn’t 
look all that interesting. But the actuaries seemed 
an exciting bunch. They earned a lot more money 
too. I soon found myself punching keys on a 
Freiden calculator computing monthly annuities 
and thinking that perhaps, one day, I’d try the 
beginning actuarial exams. It was during that 
period that I started attending night school at 
Union County Junior College (UCJC or Ucey-
Juicey). I took engineering math, the tougher of the 
two math sequences offered, along with a 
collection of liberal arts courses. And then the great 
war erupted and everyone’s life was dramatically 
changed.

After basic training the army offered a program 
called ASTP (Army Specialized Training Program) 
in which soldiers were sent to a college to take 
engineering and science courses. To qualify one 
had to pass a series of exams. My decision to take 
engineering math at night school proved to be the 
crucial element in my being accepted into the 
ASTP program and sent on to N.C. State to take 
courses in electrical engineering. Later, and after a 
second dose of basic training, I ended up at the 
Army’s Aberdeen Proving Grounds in Maryland 
and a member of a chronograph team. We traveled 
all over the Philippines determining the muzzle 
velocities of field artillery pieces with a clock that 
could count (the wonder of its day) to 10-5 
seconds. There was data in abundance to analyze 
and I suspect I became, quite unconsciously, 
something of a statistician even then. I returned to 
N.C. State after the war to complete my Electrical 
Engineering degree in 1947.

To this day I can hardly believe my good luck. 
Across the campus Miss Gertrude Cox was 
establishing a statistics department and R.L. 
Anderson, who had taught me advanced calculus 
while I was a GI, was a faculty member. And so I 
decided to take some statistics courses. My life has 
never been the same since.

I soon got a Masters degree from N. C. State in 
Engineering Mathematics with a Statistics minor 
and then promptly took a full time job as manager 
of the computing laboratory at the Institute of 
Statistics. This was back in the days of the IBM 
sorter, collator and tabulator. Doing simple tasks 
such as taking sums of squares and cross products 
could consume hours. I also found myself doing a 
lot of consulting with graduate students helping 
them complete their computations for their theses. 
After a couple of years I tired of working on the 
other guy’s thesis. “Heck, I can do that.” And so I 
resigned my job and became a full time Ph.D. 
student.

I spent my summers working for Frank 
Grubbs at the Aberdeen Proving Grounds. I now 
proudly recall one occasion when I stayed awake 
for 26 hours running the ENIAC (the world’s first 
electronic computer). One day Dr. Grubbs asked 
what I was planning to do for a Ph.D. thesis. I 
replied, “Oh, something in factorial designs.” He 
wondered if I had read the paper by Box and 
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Wilson (Box, G. E. P. and Wilson, K. P. , (1951), 
“On the experimental attainment of optimum 
conditions,” Jour. Royal Stat. Soc. Series B 13.) “Yes,” 
I replied, “And isn’t that linkage between regression 
and experimental design fascinating.” Miraculum: 
that autumn the Army Research Office proposed 
that Miss Cox invite George Box to Raleigh for one 
year as a research professor with Frank Grubbs as 
program supervisor.

Those were the days. I was newly married. I 
worked under Box on a great thesis topic: rotatable 
designs. (Box, G. E. P. and Hunter, J. S. (1957) 
“Multi-factor experimental designs for exploring 
response surface,” Annals of Mathematical Statistics, 
28, 195-241.) After graduating in 1954 I secured a 
fine industrial job at American Cyanamid as 
“consulting statistician.” Further, my boss, Herbert 
Grosskopf, encouraged me to give short courses 
and public seminars. He was anxious that the arts 
of statistically designed experiments be announced 
to the industrial world. Then in 1958 came an 
invitation to become a member of the Statistical 
Techniques Research Group at Princeton University 
with George Box and John Tukey as the 
co-directors. Not too long after I became the first 
editor of Technometrics, then moved on to 
Wisconsin for several years and back to Princeton 
for another twenty-five years. I am now enjoying 
an active retirement.

You may be surprised to learn that I have 
never, formally, been a member of a statistics 
department. My academic appointment at 
Princeton was in the School of Engineering and 
Applied Science, initially in the Chemical 
Engineering Department and later in Civil 
Engineering. Thus I’m a hybrid: part engineer and 
part statistician, or perhaps more accurately a 
statistics stem grafted onto an engineering root. 
And I’d like to propose that being a “hybrid” is a 
very good idea. The field of statistics becomes 
positively lively once you can engage the language 
and thinking processes of a specialized subject 
along with that of statistics. I can definitely declare 
that anyone with an interest in a science, or 
medicine, or engineering, or even politics who has 
an interested in handling data will find a career in 
statistics rewarding.

I have always been a good teacher. A gift. In 
addition to my on-campus lectures I guess that I 
have taught a hundred or so industrial short 
courses, not counting a TV series of 32 one-half 
hours. In addition, I have always enjoyed 
spreading the word that statistics is exciting, useful 
and fun and to this day I seldom turn down 
invitations to speak to local groups. I mention this 
because I think it very important that statisticians 

not be shy. Too many in society think of us as dull 
number-crunchers. They are wrong! Thus, 
whenever we get the chance to talk about what it is 
we do, we should accept and make it as interesting 
as possible.

Over the years I’ve collaborated on a host of 
different projects. Before satellite observation was 
possible, aircraft flying overseas were on their own 
for long distances and I was part of the team that 
determined the overseas flight corridors between 
the USA and Europe—Asia. I helped in the design 
of the automobile airbag, consulted on many many 
chemical pilot plant investigations, conducted a 
local election survey, helped in the study of 
pollution from coal fueled power generators using 
radio-isotopes, was part of a team that reviewed 
the repeatability and reproducibility of EPA’s 
national laboratories, testified before Congress on 
the statistical aspects of environmental monitoring, 
and have consulted in varied industries: chemicals, 
metals, glass, pharmaceuticals, auto, micro-
electronics, ... . My latest consultations concern the 
development and manufacture of very small but 
powerful batteries which, if successful, will greatly 
influence the future of the electric car. In all these 
activities my role has been that of a consultant or 
participant and although I may not lead a project I 
do try to pull a strong oar. There are not many dull 
moments.

What message is there in all of this ruminating 
for the young nascent statistician? To be sure, luck 
plays a role in one’s career, and I have had my 
share. But so does being happy with who you are 
and with what you are doing. My main message is 
that statisticians are not mathematicians laboring in 
some secluded field, nor number librarians 
keeping data in neat files. We are professionals 
who recognize the important difference between 
data and information and thus have the unique 
task of shaping the links between ideas and their 
quantitative measures. In many ways we are 
acolytes to the scientific method, lighting the way 
from conjecture to data acquisition, and through 
the pathways of analysis helping in the creation of 
new ideas and repetition of the learning cycle.

Frankly, the profession of statistics is unlike 
any other in the excitement it can provide. What 
other professional can you name who is equally 
welcomed (sometimes feared) by the research 
worker, the doctor, lawyer, politician, or everyday 
citizen immersed in data? What other philosophy 
provides the language and logic for elucidating the 
scientific method? No other. We statisticians are a 
unique clan.

Welcome aboard.
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derive models, design studies, analyze data, or 
prepare reports.

Many interesting projects arose from other 
government agencies. On one occasion, the 
National Archives and Record Service (NARS) 
solicited NBS assistance in designing a cost 
preservation survey of the vast array of historical 
documents in their archives. Keith Eberhardt was 
(and still is) an expert in surveys and sampling, 
and, consistent with our division chief’s philosophy 
of two persons per project, included me as the 
backup statistician on the project. Keith and I 
made several trips to NARS in downtown 
Washington for meetings to determine the 
sampling frame, develop the appropriate design, 
and to conduct (personally!) the pilot survey. That 
experience taught me why one should never do a 
survey without a pilot; we learned a tremendous 
amount from the pilot data. I also dragged Keith 
across the street to the National Gallery of Art 
during lunchtime — he was always a good sport 
and indulged my insistence on experiencing a bit 
of culture while we had the opportunity!

My experience with primary standards 
provided me with excellent training as a statistician 
in Hewlett Packard’s Stanford Park Division which 
manufactured electronic instruments, such as 
power meters and signal generators, “traceable to 
NBS” (measurements calibrated against NBS’ 
standards). The atmosphere in industry was quite 
different from a government research laboratory. 
Things happen very fast in industry: a process that 
was running last week may be entirely different 
this week if the supplier had to substitute different 
materials needed to manufacture the components. 
Much more dependence on other processes and 
departments required more cooperation among 
those involved. Rarely did we have the luxury to 
derive the “perfect” solution, as time and cost were 
crucial considerations. (My brother in industry was 
once told, “The best is impossible. Second best is 
too expensive. Go with the third and get on with 
it.”) Production floors were incredibly active and 
full of noise with busy workers operating complex 
machinery. While the research and development 
laboratory was less noisy than the production floor, 
the open partitions, versus structured offices at 
NBS, led to a more active atmosphere. 

Perhaps it was the nature of my job, but, 
somewhat surprisingly, I had many more meetings 
at HP than I have ever had while working for the 
federal government. Some meetings involved 
managers who needed guidance on measuring 
productivity in their departments, others involved 
production line supervisors requesting assistance 
in identifying influential variables on part defect 
rates, and still others involved R & D engineers 

When R ick 
Burdick, associate 
editor for STATS, 
a s k e d  m e  t o 
submit an article 
for the column 
“On The Job,” he 
suggested that I 
describe several 
typical “days” from 
m y  p a s t 
experiences which 
have ranged from 
government  to 
i n d u s t r y  t o 
academe.  Each 
position offered its 
own challenges, 
r e w a rd s ,  a n d , 
most of all, learning experiences which, when 
taken together, contributed to an overall package 
that has been valuable in teaching and research.

My first permanent job following my doctorate 
was in the Statistical Engineering Division at 
National Bureau of Standards (NBS), now National 
Institute of Standards and Technology, supervised 
by Dr. H.H. Ku. This position was a haven for a 
new Ph.D. The division’s expertise was well 
respected by Bureau scientists as well as by other 
government agencies, so challenging problems 
were at one’s doorstep. Projects required tools from 
all areas of statistics—designing an experiment to 
measure the force of gravity to one more decimal 
place, deriving calibration curves for weights and 
measures, assessing the uncertainty in a Bureau-
certified amount of a chemical or compound in a 
standard reference material used to calibrate 
customers’ measuring devices—and I learned an 
enormous amount about statistical practice from 
my highly qualified colleagues. A typical day might 
involve the analysis of data from one project, one 
or more meetings with scientists from other 
projects describing their needs and objectives 
(usually at the scientists’ laboratories), and weekly 
or semi-weekly statistics seminars with either 
outside speakers or in-house statisticians or 
scientists presenting their work for comment and 
feedback. The atmosphere was lively and fun but 
very active. There were hallway conversations 
where ideas were exchanged and office doors were 
wide open, to encourage collaboration, where 
people could be seen working at their desks to 

Karen Kafadar
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designing products to meet specific performance 
objectives. Some projects were short; I wrote 
several memos each week with summaries of the 
consultation and recommendations for further 
actions, ranging from the usual “How large a 
sample will I need?” to specification limits from 
measurements on several sources of variation. 

One of my favorite stories involved a project 

manager who needed specification limits on the 
power output of an instrument developed in his 
group. He had 100 measurements on only one lab 
prototype instrument, not on a sample of 
representative instruments that had been 
manufactured on the production line. I explained 
that he needed at least one, if not several, more 
instruments, so he measured a second one: “I did 
what you said and got different answers. Now what 
do you want me to do?” Despite the sometimes less 
than full appreciation for measurement uncertainty, 
the precision and quality of the measurements in 
an engineering setting such as those from NBS and 
HP is a real blessing—just ask anyone who deals 
with data on real people, subject to many sources 
of extreme variation.

A typical day at HP would start usually with 
meetings or with returning phone calls to people 
who had left notes on my desk asking to set up a 
meeting. The most active time of the day was 9-3; 
after 3, many of the production workers who 
started at 6 or 6:30 had gone home, and others sat 
down to some quiet work. It was not uncommon 
to see people working well past 7 in preparation 
for the next day. Statistical questions arose 
throughout the division, from production and R & 
D to marketing and personnel, and beyond, across 
the company to other divisions. Adopting a “lean 
and mean” approach, there were often only 1 or 2 
statisticians per division (of usually 1000-1500 
people), so we statisticians often contacted our 
colleagues in other divisions to share experiences, 
programs, and other tools.

During my seven years at HP, I had the good 
fortune of being appointed Associate Editor of 
Technometrics by then-editor William Meeker at Iowa 
State. So some of my “typical” days at HP, and since 
(to present day), involve editorial work: reading 
manuscripts, assigning and writing to referees, 
summarizing reports and preparing an overall 
recommendation to the editor. I am very grateful to 

Bill Meeker and to his successors for giving me the 
opportunity to stay current with the latest statistics 
research while providing an important service to the 
profession. HP of course did not really budget time 
for its employees to conduct such outside research, 
but I had a terrific and very supportive supervisor, 
Julius Trager, who endorsed this kind of career 
development for his statisticians.

Both of these positions, together with a brief 
research fellowship in the Biometry Branch at the 
National Cancer Institute, provided me with real-
life experiences that I enjoy sharing as a professor 
at the University of Colorado–Denver . Faculty 
interests in our department lie in primarily one of 
four areas in applied mathematics: computational 
math, discrete math, optimization, and probability/
statistics. My “typical” day here is not too different 
from that of David Moore (see STATS 1995, 13, 
26-27): grade assignments, hold student office 
hours, review notes for the day’s lecture, attend 
faculty or committee meetings, solicit advice on 
administrative matters from our program assistant, 
handle editorial matters, return phone messages, 
check postal and electronic mail, and, on a rare day 
of luxury, scan articles from the latest statistics 
journal to arrive in the mail. The biggest difference 
is that most of my classes are taught after 4 p.m. So 
I learned a trick from Dick Jones, head of the 
graduate program in Biometrics at CU’s Health 
Science Center: reserve mornings for research-
related activities, and schedule meetings with 
students, colleagues, and clients for the afternoons.

One of the best aspects of our department is 
the potential  for cross-fert i l izat ion with 
collaborators in various areas of mathematics. I am 
just starting to learn about some of the problems 
facing the computational mathematicians and hope 
to contribute a statistical component to their 
mathematical models of physical phenomena.

I feel very fortunate to have had a wide variety 
of experiences in my professional career. Many, if 
not most, university departments are cautious 
about hiring people from government or industry, 
even if they have maintained a publication record. 
And yet it is precisely those kinds of experiences 
which have made it easier for me to teach statistics 
to students and to communicate with clients, both 
within and outside of the University. I would 
encourage every student to take advantage of these 
opportunities as they arise. As academic 
departments acquire greater respect for applied 
statistics, they may be more inspired to hire faculty 
from industry or government so students can learn 
from their experiences and be better prepared for 
their own careers.

That experience taught me why 
one should never do a survey 

without a pilot
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as exploration and modeling, rather than primarily 
as confirmation of facts that are already known.

Let’s look at the density example a little more 
closely. In physics classes in high school, or even 
physical science in middle school, a common 
experiment is determining density using water 
displacement. This experiment provides a great 
opportunity to collect and analyze class data. 
Below is a boxplot of 24 determinations of the 
density of a nut and bolt; measurements are in 
grams per milliliter.

Clearly, two of the observations are unusual 
(outliers). The class can investigate and discuss 
what laboratory experience led to these two values. 
The other observations suggest that the density is 
near 1.50 g/ml, but there is considerable variation 
in these values as well. We do not know the 
“correct’’ answer here, nor can we look up the 
answer in a reference book. Rather, we have 
explored the situation by experimenting.

BoB StephenSon

Professor of Statisics
Iowa State University

Jeffrey A. Witmer

Professor of Mathematics
Oberlin College

Dear Dr. STATS,
I am a science teacher in a middle school and 

teamed with a math teacher. She has been telling 
me about how statistics is a big part of the K-12 
mathematics curriculum. Since I do a lot of hands-
on experiments that involve observation and 
measurements, she thinks that my science classes 
are a natural place to expose students to the ideas 
of statistics. Where can I go to get information on 
how to use statistics in my science classes?

Signed,
All this data, and no where to go

Dear All This Data,
The Quantitative Literacy (QL) project is an 

effort on the part of statistics and mathematics 
educators to improve how statistics is viewed and 
taught by high school mathematics teachers. Since 
the mid 1980s, the American Statist ical 
Association’s Center for Statistical Education has 
organized Quantitative Literacy workshops at 
various places around the country. These efforts 
have been in concert with the National Council of 
Teachers of Mathematics movement to revamp 
mathematics instruction with their Curriculum and 
Development Standards. I took your question to 
Jeff Witmer, Professor of Mathematics, Oberlin 
College, a member of the QL project team and a 
task force member for the Science Education And 
Quantitative Literacy (SEAQL) project (see STATS, 
No 12, Fall 1994 pg. 20). Here is what he had to 
say.

Science students routinely collect large 
amounts of data that are used to answer specific 
questions. In a typical science class, each student 
(or team of students) completes a procedure and 
determines some sort of answer, for example, the 
density of a substance. Rarely are class data 
compared to anything other than an accepted 
value, as found in a reference book. SEAQL seeks 
to foster genuine exploration of data in science 
laboratory activities that promote a view of science 

Bob Stephenson Jeffrey A. Witmer

Jeffrey A. Witmer is Principal Investigator of the 
SEAQL project, an NSF Teacher Enhancement grant. A 
past-Editor of STATS, he has presented over a dozen 
workshops for middle and high school science and math 
teachers. His E-mail address is jeff.witmer@oberlin.edu.
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two to four weeks, teachers are taught data analysis 
techniques using the Exploring Data QL book 
(Exploring Data, Revised Edition, by J. Landwehr 
and A. Watkins, Dale Seymour Publications) and 
are given experience using these techniques with 
data that are generated during the workshop. The 
teachers participate in science labs in biology, 
physics, chemistry, earth science and general 
science that are, for the most part, familiar to the 
teachers. They then use QL ideas in analyzing the 
data.

Other aspects of the workshops include 
instruction in the use of graphing calculators and 
calculator-based lab equipment, such as a 
temperature probe for gathering data during a heat 
of reaction experiment, discussion of non-standard 
labs that teachers have used with success, group 
projects in which participants gather and analyze 
data of their own choosing, time for teachers to 
prepare lesson plans as they consider how they will 
use SEAQL in their science classes, and brief 
consideration of statistical aspects of experimental 
design.

SEAQL is funded through 1998 by a grant 
from the National Science Foundation. If you 
would like more information about SEAQL please 
contact: The ASA Center for Statistical Education, 
703-684-1221.

The collection, display and discussion of data 
for the whole class, or even among several classes, 
helps students develop an appreciation of inherent 
variation, measurement bias and precision. Indeed, 
experience suggests that students are more inclined 
to try to be accurate and precise in their 
measurements when they know that their data will 
end up as part of a class boxplot—no one wants to 
be an outlier!

Other science activities that lend themselves 
naturally to the sort of data collection and analysis 
promoted in SEAQL are:

—Determining the acceleration due to gravity 
using two or more methods

—Investigat ing the relat ionship between 
temperature and volume of a gas at constant 
pressure (Charles’ Law)

—Simulating radioactive decay through the use of 
a shoe box, corn seeds and sunflower seeds

and many others. Prototype activities have been 
developed for biology, physics, chemistry, earth 
science and general science (typically taught in 
middle school to students age 12-14).

The outreach mission of SEAQL is to bring 
this information to science teachers through 
workshops. In SEAQL workshops, which last from 
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Jerry Keating

Professor of Statistics
University of Texas  
at San Antonio

STATS Quotes
“By a small sample we may judge the whole piece”

—Miguel de Cervantes Saavedra (1547-1616)

STATS from the Front Page
On October 28, 1997, the Dow Jones 

Industrial Average (DJIA) dropped 554.26 points: 
the largest single day point loss in the market’s 
history. Trading was halted. However, market 
analysts advised investors that this was not a 
market collapse because the drop only represented 
a 7.2% drop. {As you know the DJIA is an example of 
a time series. To what statistic are the analysts referring 
investors?} This was probably not much solace to 
Bill Gates the Executive Director of Microsoft 
Corporation whose stock dropped $1,760,000,000 
in value. And you thought that you had a bad day! 

Answer: Signal to Noise Ratio

The 10 worst days for the DJIA in terms of 
percentage loss are given below:

1) October 19, 1987 22.61%

2) October 28, 1929 12.82% Market Collapse
3) October 29, 1929 11.73% leading to the
4) November 6, 1929  9.92% Great Depression

5) December 8, 1899  8.72%
6) August 12, 1932  8.40%
7) March 14, 1907  8.29%
8) October 26, 1987  8.04%
9) July 21, 1933  7.84%
10) October 18, 1937  7.75%

October has a rather ignominious distinction 
in that half of the 10 worst percentage losses of the 
DJIA occurred in October. 

STATS from Science
As I watched the recent movie release, 

Volcano, with that scientific subtitle: The Coast is 
Toast, I wondered what was the worst volcano in 
history? Due to lack of measurement devices in 
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prehistoric times we cannot piece together the 
worst cataclysm unless of course you support “The 
Big Bang Theory” of the origin of the universe. 
Nonetheless, here are some record values on 
another volcano that you can add to your disaster 
portfolio.

On August 27,1883, Krakatoa (Krakatau) 
erupted in the Indonesian arc. Anecdotal evidence 
includes that the explosion was heard on 
Rodriguez Island some 4,653 km across the Indian 
Ocean. At least 36,417 persons were killed most by 
giant sea waves, which reached heights of 40 m 
above sea level. Blue and green suns were observed 
as fine ash and aerosol reached as high as 50 km 
into the stratosphere. The volcanic dust lowered 
global temperatures as much as 1.2 degrees 
Celsius. Certainly, this eruption was not Krakatoa’s 
worst, which most likely occurred around 416 AD.

STATS Parodies
We’re adding a new section, STATS Parodies, 

to OUTLIER ... s. In this issue we feature two 
parodies by Professor Mark Glickman, Statistics 
Professor in the Mathematics Department at Boston 
University. His first parody is of the Rolling 
Stones’ mega-hit, “Satisfaction,” and the second is 
a parody of the Beatles’ hit, “Nowhere Man.” Mark 
is pictured on the next page tuning up his guitar, 
getting ready for class.

To get the full effect of Mark’s contribution 
listen on Mark’s web page at

http://math.bu.edu/people/mg/music.html. 

If your system is a bit slow like mine be 
patient, it takes a while to upload the music.

Title: “Statisfaction”
Words: Mark Glickman
Music: Jagger/Richards (“Satisfaction”)

I can’t get no statisfaction,
I can’t get no statisfaction.
’Cause I try and I try and I try and I try.
I can’t get no, I can’t get no.

When I’m sitting down at lecture,
And that man begins to explain to me
That you must pay close attention
When you’re fitting regression
To heteroskedasticity!
I can’t get no, oh no no no.
Hey hey hey, that’s what I say.

I can’t get no statisfaction,
I can’t get no statisfaction.
’Cause I try and I try and I try and I try.
I can’t get no, I can’t get no.



ASA STATS #21  ■  WINTER 1998     27

When I’m working on my homework,
And I’m filled with great uncertainty,
So I choose the pooled procedure,
And my teacher points and laughs at me
’Cause our p-values don’t agree!
I can’t get no, oh no no no.
Hey hey hey, that’s what I say.

I can’t get no statisfaction,
I can’t get no statisfaction.
’Cause I try and I try and I try and I try.
I can’t get no, I can’t get no.

When I’m handed my diploma
For my hard earned Bachelor’s degree,
And the Dean says I cannot leave 
Until I give an explanation 
How to compute a correlation.
I can’t get no, oh no no no.
Hey hey hey, that’s what I say.

I can’t get no statisfaction,
I can’t get no statisfaction.
’Cause I try and I try and I try and I try.
I can’t get no, I can’t get no.

Title: “ANOVA Man”
Words: Mark Glickman
Music: Lennon/McCartney (“Nowhere Man”)

He’s a real ANOVA man
Designing all his sampling plans
Calculating mean-squared errors and p-values.

Wants to test for equal ’s
Knows which tables he must use 
All his samples he will choose at random.

ANOVA man, please listen;
Where’s the data that you’ re missing
ANOVA man, what kinds of bias can you  

 withstand?

Writes down two hypotheses;
Hopes to reject the first of these;
Needs to list out all degrees of freedom.

ANOVA man, try harder,
Don’t give up you’re smarter;
ANOVA man, how come your students don’t  

 understand?

At 0.05 he rejects
Ignores the size of his effects
Now he’s stuck - he’s got selection bias!

ANOVA man, please listen;
Where’s the data that you’re missing
ANOVA man, what kinds of bias can you 

 withstand?

He’s a real ANOVA man
Designing all his sampling plans
Calculating mean-squared errors and p-values.

All you headbangers stay tuned to our next 
issue for Peter Westfall’s parody of “Takin’ Care of 
Business” by the Bachman Turner Overdrive. If you 
have original songs or parodies of popular hits 
send them to me at the address given on pg. 1.

STATS Pop Quiz
I. There are four colored balls in a bag: two red 
balls, one black and one blue. If you draw two 
balls at random, and then you’re told that one of 
them is red, what is the likelihood that the other 
ball is also red?

Taken form Mind Bending Puzzles  
by Terry Stickles.

Answer: 20%

II.  The following data are the electrical 
consumption in kilowatt-hours of the Keating 
household for the months of March and April from 
1986 through 1992.

Year   92  91  90  89  88  87  86
March  973 923 944 1,128 852 948  884
April  900 998 875 1,136 919 970 1,059

Which observation would you omit to create a 
sample with a skewness as close to that of the 
original sample as possible? Which observation 
would you delete to maximize the skewness? Can 
you generalize your findings?

Answers: Maintain skewness:  973
  Maximize skewness: 1,059
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STATS Revisited
In response to an earlier problem that I gave in 

STATS (Spring 1997, Number 19, p. 29), let me 
provide the following explanation:

Question: A certain blood test was 99% accurate in 
declaring the presence of the HIV virus among a 
group of persons known to be HIV+. Among a 
control group of persons known to be HIV-, the 
same blood test had a false-positive rate of 2%. If 
0.3% of a population are HIV+, what is the 
probability that a randomly chosen person in this 
population is HIV+ given that the blood test is 
positive?

Explanation: Consider a representative group of 
100,000 persons so that exactly 300 are HIV+. You 
would expect that 297 (99%) of these HIV+ 
members would test positive based on the blood 
test. Of the 99,700 who are HIV-, we expect the 
blood test to falsely declare 1,994 members (2%) 
as positive. Then you have an expected total of 
2,291 members who test positive but only 297 are 
indeed HIV+. The subsequent ratio 297/2,291 
produces a probability of 0.129638.

STATS Funnies
Can you identify the statistical terms in the 

two cartoons given below? These were taken from 
“Lower Bounds on Statistical Humor” by Alan H. 
Feiveson, Mark Eakin and Richard Alldredge. The 
artwork is by Kathlene Senghaas and Mark Eakin.
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Answer: Contingency Table Answer: Tukey (two-key) Studentized Range

Winners of the STATS 
Face the Facts Contest

These readers recognized the cover photo of Cleveland, 
Ohio (STATS, Fall 1997, Number 20):

Chris Andrews, University of California, Berkeley, CA;
Rick Cornez, University of Redlands, Redlands, CA;
Yan Liu, The George Washington University, 

Washington, DC;
Lisa Rybicki, Cleveland Clinic Foundation,  

Cleveland, OH;
Tom Short, Villanova University, Villanova, PA;
Steve Wang, The University of Chicago, Chicago, IL.

Readers sending in other excellent suggestions 
(Chicago, Pittsburgh, and Cincinnati):

Andrea Hofer, University of Vienna, Vienna, Austria;
Todd Schwartz, University of North Carolina at Chapel 

Hill, Chapel Hill, NC;
Don Reed, Georgia State University, Atlanta, GA

New STATS Species-diversity 
Contest

For the research described in “Bugs, Hollow 
Curves and Species-diversity Indexes,” 
Robinson used empirical methods to 
estimate the variance of the number of 
shared species between pairs of samples (p. 
11).
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