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inference when analyzing the paradox. Armed with his 
analysis, you might consider being a contestant on “Deal 
or No Deal.”

In “AP Statistics,” Peter Flanagan-Hyde discusses the 
confusion between a regression line and a trend line. He 
poses an interesting question: “When you look at the dots 
in a scatterplot, do your eyes trace out a regression line or 
a trend line?” To answer this question he has conducted 
a simple experiment with some interesting results. Get 
some friends together and try it yourself to see if you get 
the same results. It could be a real ‘eye opener’.

Have you ever wondered how those values in the 
standard normal tables are calculated? In Bruce Trumbo’s 
“R U Simulating?” article, he shows how to do the 
calculations using numerical integration and how to 
calculate the value of pi (π) to whatever level of precision 
is needed. Try your numerical analysis skills on his 
challenges.

If you’ve been thinking about a career teaching 
statistics, you might have wondered about the difference 
between teaching at a small liberal arts college and a 
big university. In “Ask STATS,” Jackie Miller says, “Hey 
Professor ...” and asks Carolyn Cuff of Westminster 
College to share her personal story.

Chris Olsen is going to extremes in this issue. In 
Statistical “µ-sings,” he notes that sometimes what happens 
on average is not what we should be worried about. How 
do we model extreme events such as the record-breaking 
hurricanes and floods of 2005? Statistical analysis can be 
“extremely” important in science, engineering, and our 
daily lives. 

If you have a great idea for a STATS article, send it to 
me at pjfields@byu.edu. Statistics is everywhere!

In our lead article of this issue of STATS, Eric Suess, 
Daniel Sultana, and Gary Gongwer discuss how to be 
confident when using binomial confidence intervals. 

They point out the dangers of being complacent in our 
statements of confidence because sometimes 95% is not 
really 95%. Look at their graphs showing the coverage 
probabilities of traditional confidence intervals. You might 
be surprised. They show how problematic it can be to use 
the normal distribution (continuous) to approximate the 
binomial distribution (discrete). Then, the authors explain  
a simple modification to the calculations that can help us 
be more confident in our confidence.

Speaking of the binomial distribution, check out the 
STATS Puzzler’s “Tale of the Missing Tail.” See if you can 
solve his puzzle.

In NASCAR, race car drivers always are looking for the 
winning edge. Tracy Rishel and Barry Pfitzner use a simple 
statistical test to look for the existence of a team effect in 
stock car racing. They want to know, “Is there evidence 

that multiple-car teams do better than single-car teams by 
finishing more often in the top 10 places?” Rev up your 
statistics engine and see if you can do the analysis. 

We have several new features in this issue of STATS. 
The first is “Statistical Snapshot.” It might seem intuitively 
obvious that two statistical tests should be better than one. 
But if you think so, this “Statistical Snapshot” will give you 
new statistical insight.

Also new in this issue is an international feature that 
presents articles by statisticians from around the world. 
Our international feature, which is also our cover feature, 
is from Mexico. Federico O’Reilly from the Universidad 
Nacional Autónoma de México looks at the classic “Two-
envelope Exchange Paradox.” He shows how to use 
the statistical concepts of expectation, likelihood, and 
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Daniel Sultana Gary Gongwer 

Among 18-year-old students, what percentage 
has clear career goals? Suppose you ask a
 random  sample of n = 25 such students from your 

school and find that x = 8 have specific careers in mind. 
So their proportion in your sample is p^=x/n= 8/25 = 0.32. 
From this information, you might guess the population 
proportion, p, for your school is somewhere around 1/3. 
However, the number of Yes answers, X, is a random 
variable. Specifically, X is a binomial random variable with 
n = 25 trials and p = probability of a success = P  (Yes). 
How close to p^ might the true value of p lie? The formula 
for the traditional 95% confidence interval (CI) shown in 
many elementary statistics books is:

In our case, this gives 0.32 ± 0.183. Here, 0.32 is the 
point estimate of p and 0.183 is the margin of error for 
the estimate. Notice that both 0.32 and 0.183 are computed 
from X. According to this formula, we would be 95% 
confident that the interval 0.137 and 0.503 captures the 
true value of p. That’s a pretty long confidence interval, 
but with so little data, we can’t expect great precision. Of 
course, if we interviewed more people, we would get a 
shorter CI.

Now we consider whether our 95% confidence in 
such intervals is justified. The traditional formula displayed 
above is based on two assumptions. The argument goes 
like this:

First: The binomial distribution of X is  approximately 
normal for large n. So the distribution of 
p^= X/ n is approximately normal with mean 

p, and  variance σ2 = p (1 –  p )/n,  and (p^ – p)/σ
is approximately standard normal. Thus, 

P { –1.96 ≤ (p^  – p)/  σ  ≤ 1.96 }  =  0.95. 

Manipulating the inequality in this expression, we 
find there is 95% probability that p lies in the interval 
p^  ±  1.96  σ. But, this expression is useless just as it 
stands. We cannot use it to calculate a CI because p 
is unknown and so σ is also unknown.

Second: In order to get a CI, we also assume that σ2 

is well approximated by  p^ (1 – p^)/n. So, under the 
square root in the displayed formula for the traditional 
CI, we assume it is okay to use the estimate p^ instead 
of the true value of p.

Especially for small values of n, there are good 
theoretical reasons to be skeptical of both these 
assumptions. The normal distribution is continuous and 
symmetrical. The binomial distribution that it is supposed 
to approximate is discrete and may be skewed when p 
differs from 1/2. Perhaps more importantly, one has to 
wonder how much error in the length of the CI arises from 
using p^ as an estimate of p to get the margin of error. If 
the CI is longer or shorter than it should be, that would 
affect the chance it covers the true value of p.

Moreover, there is a serious practical problem with 
the traditional CI. If p^= 0 or 1, then the estimated margin 
of error becomes 0 and we have a CI of 0 length. For 
example, if we sampled 25 cattle at random from the 
United States and found none of them had mad cow 
disease, an alleged 99.99% CI would ‘guarantee’ that the 
entire United States is free of the disease. How wonderful 
it would be if life were so simple!

In this article, we will see two things: (1) For small n, 
the true coverage probability of the traditional CI is 

How Much Confidence 
Should You Have in 
Binomial Confidence 
Intervals?

n
ppp )ˆ1(ˆ

96. .1ˆ
−±
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The coverage probability for p = 0.30 is the sum of 
all nine of these probabilities: 

P (Cover) = P{X = 4}  +  P {X = 5 }  +  ... + P {X = 12 }  
=  0.0572  +  0.1030  +  ... + 0.0268 = 0.9493. 

Thus, the coverage probability of the traditional 95% 
CI is 94.93% when n = 25 and p = 0.30. This result is very 
close to the promised 95% confidence level. So what’s 
the problem?

 x  Est.  LCL  UCL  Probability
 ...
  2  0.08  -0.0263  0.1863
 3  0.12  -0.0074  0.2474
  4  0.16  0.0163  0.3037
  5  0.20  0.0432  0.3568  0.0910
  6  0.24  0.0726  0.4074  0.1363
  7  0.28  0.1040  0.4560  0.1662
  8  0.32  0.1371  0.5029  0.1680
  9  0.36  0.1718  0.5482  0.1426
  10  0.40  0.2080  0.5920  0.1025
  11  0.44  0.2454  0.6346  0.0628
  12  0.48  0.2842  0.6758  0.0329
  13  0.52  0.3242  0.7158
  14  0.56  0.3654  0.7546
 ... 

 P {CI covers 0.31} = 0.9024 

The problem is that if we change to p = 0.31, the 
interval corresponding to x = 4 no longer covers p, and 
the coverage probability drops to 90.24%. Thus, what is 
supposed to be a 95% CI has nowhere near 95% coverage 
probability. The probability column of the table changes 
a bit with p = 0.31, but most of this difference results 
from the loss of the probability corresponding to x = 4 
(see Table 2 and Figure 1). 

often distressingly far below 95%, and (2) a very simple 
modification of the traditional CI works much better.

Exploring Coverage Probabilities of 
The Traditional CI

What do we mean by “coverage probability”? To answer 
this question, consider the values n = 25 for the number of 
trials and p = 0.3 for the population proportion. In this case, 
the random variable X takes 26 values: x = 0, 1, 2, ... 25. As it 
turns out, it is sufficient for us to look at the values 2 through 
14, and we show them in the first column of Table 1. The 
second column shows the corresponding possible values of 
the estimate p^ = x/n. The next two columns show the lower 
and upper confidence limits based on the traditional CI. 
Notice the interval (0.137, 0.503) mentioned earlier is one of 
these (look at the box in row 8). 

 x   Est. LCL  UCL  Probability
  ...
  2 0.08  -0.0263  0.1863
  3 0.12  -0.0074  0.2474
 4 0.16  0.0163  0.3037  0.0572
 5 0.20  0.0432  0.3568  0.1030
  6 0.24  0.0726  0.4074  0.1472
  7 0.28  0.1040  0.4560  0.1712
  8 0.32  0.1371  0.5029  0.1651
  9 0.36  0.1718  0.5482  0.1336
  10 0.40  0.2080  0.5920  0.0916
  11 0.44  0.2454  0.6346  0.0536
  12 0.48  0.2842  0.6758  0.0268
  13 0.52  0.3242  0.7158
  14 0.56  0.3654  0.7546
  ... 

So far, we have used only the parameter n = 25. Now 
we begin to use p = 0.30. We notice that the CIs resulting 
from values of x from 4 through 12 cover (include) this 
value of p, even though the upper end of the CI for x = 4 is 
just barely larger than 0.30.

For the last column of Table 1, we compute the 
binomial probabilities for these outcomes x = 4,  5, ... 12, 
based on the parameters n = 25  and  p  = 0.30. For example, 
the first of the relevant probabilities is computed as

      P {X = 4} =

Table 1. Illustrating the Coverage Probability of the Traditional 
Confidence Interval when p = 0.30. This is the sum of the nine 
probabilities shown in the last column. None of the omitted values 
smaller than x = 2 or greater than x = 14 has a CI that covers 
0.30.

( ) 0572.07.03.0
21425

4 =  

Table 2. Illustrating the Coverage Probability When p = 0.31. This 
is the sum of the eight probabilities shown in the last column. In 
contrast to Table 1, the confidence interval on row x = 4 does 
not cover p = 0.31, so its probability is not included.

Figure 1. Comparing the coverage probabilities of traditional 
confidence intervals for p = 0.30 (top) and p = 0.31. A small change 
in p can result in a large change in the coverage probability of the 
confidence interval.

4 STATS 45   ■   SPRING 2006

P {CI covers 0.30} = 0.9493 
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compute the modified CI, simply use p^ 
+ and n+ in place 

of p^ and n, respectively. This kind of modified CI is called 
the Agresti-Coull CI or the “plus-four” CI. For our poll 
with eight Yes answers out of 25, the adjusted results are 
shown in Table 3, along with our earlier results using 
the traditional CI.

We can see that there are “lucky” values of p, 
such as 0.30, with coverage probabilities close to 95% 
and “unlucky” ones, such as 0.31, with much smaller 
coverage probabilities. Unfortunately, it turns out the 
traditional CI has many more unlucky values of p than 
lucky ones.

To get a more comprehensive view of the generally 
bad performance of the traditional 95% CI, we can use the R 
software package to step through 2,000 values of p ranging 
from near 0 to near 1 and plot the coverage probability for 
each of these values of p. The results are shown in Figure 2. 
It is clear that, for most values of p, the coverage probability 
is below 95%—often very much below. The two heavy 
dots in this figure show the coverage probabilities for 
p=0.30 and 0.31 illustrated in Tables 1 and 2.

Because n = 25 is a very small number of subjects, 
it makes sense to see what happens to coverage 
probabilities for larger values of n. If we look at graphs 
similar to Figure 2, but with n = 50 and n = 100, they 
unfortunately show very little improvement—and then 
mainly for values of p near 1/2 (see Figure 3, where 
n = 100). The fundamental problem remains: The coverage 
probability falls far below 95% for many values of p. It 
seems many unlucky combinations of n and p persist, even 
for surprisingly large values of n. The traditional 95% CI 
for binomial proportions simply cannot be relied upon to 
provide the promised level of confidence.

Figure 3. Even for a sample as large as 100, traditional “95% 
confidence” intervals have coverage probabilities far below 95% for 
many values of p.

Figure 2. Coverage probabilities for traditional confidence intervals 
are mostly below 95%. As p changes continuously, the discreteness of 
the binomial distribution causes some abrupt changes in the coverage 
probability. Two heavy dots show the coverage probabilities at p = 
0.30 and 0.31, which were computed in Tables 1 and 2.

Modified Confidence Intervals
Many proposals have been made to improve the 

coverage probabilities of CIs for the binomial proportion. 
Perhaps the simplest of these is the rule to “add two 
successes and two failures” to the data. This means 
that X is adjusted to X+ = X + 2 and n is adjusted to 
n+ = n + 4. Then, the modified point estimate is 
p^+= X+/n+=(X + 2)/(n + 4). The effect is to “shrink” the 
distance between the point estimate and 1/2. In order to 

Type of C I  P o i n t 
Est.

Margin of 
Error 

C I Length

Traditional .320 .183 (.137,.503) .366

Plus-Four .345 .173 (.172,.518) .346 

Table 3. Comparison of Traditional and Plus-four Confidence Intervals 
Based on 8 Yes Answers out of 25 Subjects.

Figure 4. Confidence intervals based on the rule “add two 
Successes and two Failures.” Two heavy dots show the coverage 
probabilities at p = 0.30 and 0.31 for this type of confidence 
interval. Coverage probabilities here are generally much closer to 
95% than those in Figure 2.

Coverage probabilities of 95% plus-four CIs for n = 
25 are shown in Figure 4. While coverage probabilities 
for these CIs are seldom exactly 95%, they are mainly 
much closer to 95% than for the traditional intervals. Also, 
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coverage probabilities exceed 95% for many values of p and 
fall below 95% for relatively few values of p.

In particular, returning to our earlier examples, for 
samples of size 25, the coverage probability of the plus-
four CI is 94.68% for p = 0.30 and 95.06% for p =  0.31. Both 
probabilities are remarkably close to 95% (see the heavy 
dots in Figure 4). Many values of p in the vicinity of 0.3 
have larger coverage probabilities, and some have smaller 
coverage probabilities.

Lengths of Confidence Intervals 
Of course, one can always improve coverage by 

making confidence intervals longer. At an absurd 
extreme, an all-purpose 100% CI for p—and a totally 
useless one—would be the interval (0, 1). So it is 
reasonable to ask how the average lengths of the 
plus-four CIs compare with the average lengths of 
the traditional ones. Has the increased coverage 
of the plus-four CIs come at the cost of an undue 
increase in their average length?

To show how the expected (or average) lengths 
are computed for a particular type of CI, we consider 
traditional CIs based on n = 25 subjects. Because the 
expected length depends on the value of p, we use 
p = 0.30 for an example, as we did in Table 1. Each 
value of x = 0, 1, ..., 25 yields its own CI, so we must 
view the length of a CI as a random variable L and 
compute E(L). 

Table 4, abbreviated to show only a few values 
of x, illustrates how to do this. The lower and upper 
confidence limits (LCL and UCL, respectively) are 
found, as in Table 1, for each value of x. If LCL falls 
below 0 or UCL falls above 1, then it is replaced 
by 0 or 1, respectively. Next, the length L is found 
by subtraction. Finally, the possible values of L 
are multiplied by their corresponding probabilities, 
and the 26 products are summed to give the 

expected length. For p = 0.30, the traditional CI has 
expected length 0.3498.

For values of p in (0,1) and n=25, Figure 5 
shows the average lengths of traditional and plus-
four CIs. Our computation in Table 4 corresponds to 
one point on the curve for the traditional CIs. 

What can we conclude from Figure 5? For extreme 
values of p, the plus-four CIs tend to be longer because 
the adjusted point estimates p^+  are nearer 1/2 than are 
corresponding estimates p^. Recall that the maximum 
value of p  (1–p) occurs at p  =1/2. For values of 
p^ near 1/2, the adjustment does not make much change 
in the point estimates, but it does have the effect of 
increasing n by 4, and so it decreases the margin of 
error and shortens the average CI a little. The plus-
four adjustment appears to lengthen the CIs for values 
of p near 0 or 1 as necessary to achieve roughly 95% 
coverage and shorten them for values of p near 1/2 
in a way that does no harm. Overall, it seems the 
adjustment used to make the 95% plus-four CIs has 
resulted in a reasonable tradeoff between coverage 
probability and length.

     x   UCL   LCL   Length   Prob.  Product

  0  0.0000  0.0000  0.0000  0.0001  0.0000
  1  0.1168  0.0000  0.1168  0.0014  0.0002
  2  0.1863  0.0000  0.1863  0.0074 0.0014
  3  0.2474  0.0000  0.2474  0.0243  0.0060
  4  0.3037  0.0163  0.2874  0.0572  0.0164
  5  0.3568  0.0432  0.3136  0.1030  0.0323
  6  0.4074  0.0726  0.3348  0.1472  0.0493
  7  0.4560  0.1040  0.3520  0.1712  0.0603
  8  0.5029  0.1371  0.3657  0.1651  0.0604
  9  0.5482  0.1718  0.3763  0.1336  0.0503
  10  0.5920  0.2080  0.3841  0.0916  0.0352
  ...

  25  1.0000  1.0000  0.0000  0.0000 0.0000

Sum of 26 products = E (Length) = 0.3498

Figure 5. Comparing average lengths of traditional and plus-four 
confidence intervals. For p near 0 and 1, the plus-four intervals are 
longer and therefore have coverage probabilities nearer 95%. The 
heavy dot shows the average length of the traditional confidence 
interval for p = 0.30, as computed in Table 4.

Table 4. Illustrating the Computation of the Average Length of a 
Traditional Confidence Interval for n = 25, p = 0.30.

STATS SPRING 2006 FINAL.indd   6STATS SPRING 2006 FINAL.indd   6 3/20/06   4:41:55 PM3/20/06   4:41:55 PM



7STATS 45   ■   SPRING 2006

Better, but Not Perfect
The papers by Agresti and Coull and by Brown, Cai, 

and Dasgupta have called widespread attention among 
professional statisticians to the bad behavior of the 
traditional CI for a small or moderate number of trials. 
These papers suggest a number of alternatives to the 
traditional CI, of which the plus-four CI is recommended 
as the simplest to explain and the easiest to compute. 
However, the plus-four adjustment is not a magical cure 
for every situation. One possible difficulty is at the 99% 
confidence level: When p starts to get near 0 or 1, plus-
four CIs are surprisingly conservative, having very high 
coverage probabilities and unnecessarily long intervals. 
For example, see Figure 6, where n   =   50. A general 
program in R for plotting coverage probabilities against 
p is available at www.amstat.org/publications/stats/data.
html for those who wish to experiment with variations 
(types of CIs, values of n, or confidence levels) of the 
graphs shown in this article.

carry a message that is instantly recognizable and almost 
impossible to ignore. These graphs require hundreds 
of thousands of computations. They would not have 
been made without modern statistical software or the 
imagination of those who figured out how to use such 
software to such striking effect. ■

This article originated as a student project in a seminar 
class at California State University, East Bay, and is largely 
based on class notes and the first three references.
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Technical note: 
The purpose of this note is to indicate a theoretical 
rationale for plus-four CIs. In the expression 

P {–1.96 � (p^ – p)/σ � 1.96} = 0.95, 

one can express σ in terms of p, square all 
three members of the inequality, and solve a 
quadratic equation to isolate p, obtaining a CI 
for p that depends on the normal approximation 
but does not approximate p by p^ to get the 
margin of error. The resulting point estimate of p is

(X + κ2/2)/(n + κ2) 

and the margin of error is 

[κ/(n +κ2)]  [n p^     (1 – p^) + κ2/4]1/2, 

where κ  =  1.96 for a 95% CI and is the value 
that cuts 1–  α/2 from the upper tail of a standard 
normal distribution when an interval with confidence 
1–  α2 is sought. This often is called the Wilson 
CI. The Wilson CI, with 2 instead of 1.96, is 
approximately the 95% plus-four CI. Accordingly, 
the plus-four adjustment works best for 95% CIs. 

If the number of trials is several hundred or several 
thousand, as in many public opinion polls, the plus-four 
adjustment makes less difference. However, at the 95% 
level, it seems safe and easy just to use the plus-four 
interval, regardless of sample size. Recently, authors 
of some elementary texts (Moore and Devore, for 
example) have discussed and recommended plus-four 
CIs, especially when the number of trials is small.

There have been suspicions for some time that 
the traditional confidence interval for the binomial 
proportion might not perform well. So why has it taken 
until recently for statisticians to realize how bad it really 
is and seriously investigate alternatives? One can only 
speculate. However, graphs such as our Figures 2 and 3 

Figure 6. Illustrating the very conservative behavior of 99% plus-four 
confidence intervals for extreme values of p.
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STATS PUZZLER

Schuyler W. Huck (shuck@utk.edu) 
teaches applied statistics at the University 
of Tennessee. He is the author of Reading 
Statistics and Research, a book that 
explains how to read, understand, and 
critically evaluate statistical information. 
His books and articles focus on statistical 
education, particularly the use of puzzles 
for increasing interest in and knowledge 
of statistical principles. 

Schuyler W. Huck

About two-thirds of the way through Sue’s statistics 
course (Stats 101), everyone’s attention turned to 
the concepts, procedures and logic of hypothesis 

testing. In this portion of the course, students learned 
about such things as the null and alternative hypotheses, 
levels of significance, and Type I and II errors. They 
also learned about one-tailed and two-tailed tests. 

To help students understand how hypothesis testing 
actually works, Sue’s professor asked each student to 
go out and collect some dichotomous data (only two 
possible outcomes) and then subject those data to an 
exact binomial test. It was up to each student to make 
decisions regarding the hypotheses, level of significance 
(α) and sample size (n). 

To fulfill this assignment, Sue first identified a ran-
dom sample of 10 students who had taken the same 
statistics course during the previous academic term. 
Then, she asked each person in her sample to respond 
“yes” or “no” to a single little question: “Is Stats 101 
a good course?” She decided to test the notion that 
75 percent of the students in the relevant population 
would say “yes”. 

Sue wanted to subject her data to a binomial test with 
the level of significance set equal to .05. If she chose to 
conduct the test with a directional alternative hypoth-
esis, the binomial test would be one-tailed in nature.  
However, Sue’s actual alternative hypothesis was non-
directional, thus calling for a two-tailed test.

To Sue’s amazement, when she graphed the binomial 
distribution for her test, the rejection region was posi-
tioned entirely in one tail even though her full intent 
was to conduct a two-tailed test. What could possibly 
account for the missing tail?

After you have your answer, turn to page 12 to see 
the STATS Puzzler’s solution.

The TALE of the 
MISSING Tail
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Theoretical Background
What possible advantages are likely for multicar teams 

over single-car teams? The apparent dominance of multicar 
teams can be explained at least in part by economics.

First, the marginal cost of increasing the speed of a car 
likely is to be sharply upward sloping. This is due in part 
to NASCAR rules regarding car shape, size, aerodynamics, 
weight, and engine characteristics. While these rules are in 
place to equalize competition, the existence of this degree 
of uniformity makes it difficult and expensive to gain an 
advantage within the rules. As Bill Elliott, a driver and 
former owner observes, “It may cost you $5 million to get 
to the track, but it may cost you an additional $3 million 
for a few tenths [of a second] better lap time…” Teams 
with more cars can attract greater sponsorship resources 
and are more likely to be able to engage in expensive 
research.

It may cost you $5 million to get to the 
track, but it may cost you an additional 
$3 million for a few tenths [of a second] 
better lap time… 
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C. Barry PfitznerTracy D. Rishel

Stock Car Racing 

          

NASCAR (National Association for Stock Car Racing) 
claims the NASCAR Nextel Cup Series is the most 
widely attended spectator sport in the United 

States. It generally is observed by NASCAR fans that 
multicar teams have significant advantages over single-car 
teams in stock car racing. However, it is important to back 
up casual observation with data and statistical analysis so 
that such observations are verified. NASCAR racing data 
are available online, and the statistical analysis is simple 
and revealing. Let’s analyze the possible team effect on 
the number of times teams finished in the “top 10” over 
two recent NASCAR seasons. Of course, other measures of 
success could be chosen, but such a general indication of 
success lends itself to simple statistical analysis.

Tracy D. Rishel, tdrishel@ncat.edu, teaches operations 
management, supply chain management, and statistics 
at North Carolina A&T State University. Her research 
interests include statistical, educational, and supply 
chain analyses of the motor sports industry as well as a 
variety of issues related to enterprise resource planning.

C. Barry Pfitzner, bpfitzne@rmc.edu, Edward Seese 
Professor of Economics, teaches economics, including 
statistics and econometrics, at Randolph-Macon College. 
His research interests vary from statistical analyses of golf 
and NASCAR to international inflation interrelationships. 
He is also coeditor of the Virginia Economic Journal.

 TEST
Put to the Statistical

“ “

Second, a team with more cars racing can apply any 
newly discovered advantages to each of its cars. The result 
is better performance for all cars on the team and hence 
greater probability of at least one car winning. 

Third, teams with more sponsorship income are 
able to offer greater compensation to crewmembers, hire 
more experienced and specialized team members (such 
as aerodynamicists), and reap performance benefits from 
their expertise. 

Fourth, substantial barriers to success for single-car 
teams also may exist because of scale economies. Larger 
teams can spread the fixed cost of advanced technology 
for making racing parts over more cars and reduce their 
long-run average costs.
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Other advantages also 
might accrue for multicar teams. 
Operationally, multicar teams have 
more test dates available to them 
at Nextel Cup tracks. Hence, more 
data can be collected and shared 
among team members when it comes 
to setting up the cars for races at 
those tracks. Multicar teams also have 
built-in drafting partners, although 
the NASCAR literature suggests each 
driver is on his or her own at the 
end of the race. Even so, they have 
greater opportunity to learn from 
the race results and look for ways 
to improve the performance of the 
team’s cars.

The Data
Let’s look at data for the 2002 and 2003 NASCAR 

seasons by classifying the teams by number of team 
members and their number of finishes in the top 10 
finishes or not in the top 10 to assess the effect of team 
size on this particular measure of success. Table 1 contains 
the data from 2002 and Table 2 contains the data from 
the 2003 season. In 2002, there were single-car teams and 
multicar teams with two, three, and four cars. In 2003, in 
addition to the one-, two-, three- and four-car teams, 
one five-car team was formed. Looking at Table 1, we 
can see two-car teams had the largest number of starts 
(525) and the largest number of top 10 finishes (153). In 
2003 (Table 2), single-car teams had the largest number 
of starts, but two-car teams again had the most top 10 
finishes with 114.

To assess graphically the teams’ top 10 finishes, 
consider the bar charts in Figures 1 and 2. The graphs give 
visual presentations of the numerical data in the tables. 
In both years, the single-car teams had the least number 
of top 10 finishes. Note that three-car teams seemed to 

perform much better in terms of top 10 finishes in 2003.
Another obvious way to look at these data is to 

consider the proportion (or percentage) of top 10 finishes 
by team size. Considering only graphical evidence, we 
offer Figures 3 and 4.

Visual examination suggests clearly that multicar 
teams have performed better than single-car teams by the 
top 10 finishes measure of success. It is further interesting 
that three-car teams did not perform as well as either 
two- or four-car teams. Of course, this effect is likely 
caused by variables other than team size. We only know 
that for these years at least, the three-car teams were not 
as competitive in producing top 10 finishes. We do not 
believe that three is just an unlucky number!

Although the visual examination leaves little doubt 
that team size matters in top 10 finishes, it is useful to 
test statistically for this effect. What we want to do is test 
to see if the proportion (percentage) of top 10 finishes 

  Table 1: Team Size and Number of Top 10 Finishes in 2002

Team Members 1 2 3 4 Totals

Finished in Top 10 31 153 51 123 358

Did Not Finish in Top 10 326 372 277 162 1137

Total Starts 357 525 328 285 1495

  Table 2: Team Size and Number of Top 10 Finishes in 2003

Team Members 1 2 3 4 5 Totals
Finished in Top 10 32 114 89 55 66 356

Did Not Finish in Top 10 386 246 306 89 113 1140

Total Starts 418 360 395 144 179 1496
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Figure 1. Top 10 Finishes by Team Size in 2002.

Figure 2. Top 10 Finishes by Team Size in 2003.
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If finishing in the top 10 is independent of the number 
of team members, then each of the categories of team size 
would finish in the top 10 in 24% of the starts and not in 
the top 10 in 76% of the starts. We construct Table 3 by 
multiplying the total starts for each team size by 0.2395 to 
generate the expected frequencies for top 10 finishes. For 
example, the cell that represents expected top 10 finishes 
for single-car teams is computed as 0.2395*357 = 85.49. 
That is, we would expect single-car teams with 357 starts 
to generate 85 top 10 finishes if the proportion of top 
10 finishes is the same across all team sizes. That would 
leave, of course, 272 finishes out of the top 10.

The chi-square statistic compares the observed 
frequencies (Table 1) to the expected frequencies (Table 
3) by the following formula:

        , where

k = the number of cells (here, 8)
Oi = the observed frequencies (from Table 1)
Ei = the expected frequencies (from Table 3)

The intuitive interpretation of the chi-square formula 
is that χ2 will be larger, the greater the departures of the 
observed frequencies from the expected frequencies. If 
the frequencies were identical, the sum would equal zero. 
If the calculated value of χ2 exceeds the critical value at 
a specified level of significance, the null hypothesis of 
independence of team size and top 10 finishes would be 
rejected.

The chi-square degrees of freedom = (number of 
rows - 1)  (number of columns - 1). Here, degrees of 
freedom = (2 - 1) (4 - 1) = 3. If we specify that the significance 
level for our test is .01, the computed χ2 value of 123.9 
far exceeds the table critical value of 11.34. This means 
the observed and expected distributions are statistically 
different. The common sense explanation of this result is 
that the number of top 10 finishes does depend on team 
size.

While this result may have been anticipated given the 
earlier evidence, we now have strong statistical support 
for the general observation that team size is important for 
this measure of success in NASCAR. The χ2 test for the 
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Figure 3. Percentage of Top 10 Finishes by Team Size in 2002

Top Ten Percentage by Team Members for 2003 
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Figure 4. Percentage of Top 10 Finishes by Team Size in 2003

differs with respect to the number of 
team members. There is a relatively simple 
test that has intuitive appeal for these 
types of data. We apply the chi-square 
(χ2) test of independence. What we want 
to do is calculate theoretical (expected) 
frequencies based on the null hypothesis 
that the proportion of top 10 finishes is not 
dependent on team size and then compare 
the expected frequencies to the observed 
frequencies in Tables 1 and 2. 

We use Table 1 as the example. Note from the totals 
column that there were 358 top 10 finishes from a total 
of 1,495 starts in 2002. That’s a proportion of 0.2395 or 
approximately 24%. This approximate proportion is to be 
expected, as there are almost always 43 cars in a race and, 
of course, only 10 cars or 23.3% (10/43*100) can finish in 
the top 10. 

  Table 3: Team Size and Expected Number of Top 10 Finishes in 2002

Team Members 1 2 3 4 Totals
Top 10s 85.49 125.72 78.54 68.25 358.00

Not Top 10s 271.51 399.28 249.46 216.75 1137.00

Total Starts 357.00 525.00 328.00 285.00 1495.00
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2003 season also is consistent with this result.
Because the result of this test could hinge on the 

relatively poor performance of single-car teams, it might be 
wise to test for independence among teams with multiple 
cars, eliminating single-car teams from the data. Try it! 

 As the chi-square test does not include the ordinal 
nature of the team size data, a more advanced analysis 
could be conducted using logistic regression or an ordinal 
test of categorical data. Consider using the PROC FREQ 
procedure in SAS, for example, to test for a linear trend. 

For other analyses of NASCAR statistics, see “Do 
Reliable Predictors Exist for the Outcomes of NASCAR 
Races?” by Pfitzner and Rishel in The Sport Journal 
(2005).

Helping Make Decisions
Using data from the 2002 and 2003 NASCAR seasons, 

we find that team size is an important determinant of 
success as measured by top 10 finishes. Single-car team 
owners might consider this finding to determine if they 
would like to add another car to their teams. Hence, this 
type of statistical analysis can be used to help managers 
make decisions.  ■
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STATS Puzzler’s Solution
With n = 10 and a null hypothesis that says 

H0: p = .75, the binomial distribution for Sue’s test 
looks like this: 

In choosing to perform a two-tailed test with α = .05, 
Sue wanted each tail of her binomial distribution to 
be made up of no more than 2  1⁄2 percent (α/2) of 
the full distribution. In other words, Sue wanted the 
probability of having an observation end up in the 
left tail, assuming H0 to be true, to be no greater than 
.025. Likewise for the right tail.

In Sue’s binomial distribution, the columns above 
the numbers 0, 1, 2, 3, and 4 would define the left 
tail. (There really are columns above 0, 1 and 2, 
but they are so short that they do not show up in 
the graph!) Collectively, the probability of these five 
possible outcomes is .0197. As you can see, however, 
it is impossible to create a right tail in Sue’s binomial 
distribution. That is because the probability associated 
with 10 “yes” responses (.0563) is well over the 
maximum value of .025 and, in fact, is by itself greater 
than Sue’s specified α.

With a sample size of only 10, Sue cannot 
conduct a two-tailed binomial test of hypothesis of 
p = .75 at α = .05. She would need a larger sample. If 
she were to double her sample to 20, for instance, the 
upper tail would include 19 and 20 “yes” responses 
with a combined probability of .0243. See if you can 
verify this result by graphing what Sue’s binomial 
distribution would be with a sample size of 20. 

So, the moral to this little “tale” is that if the 
probability of success in each trial (p) specified 
in a binomial test’s H0 is not close to .50 and if 
the sample size is small, the resulting sampling 
distribution can be quite asymmetric and it may be 
impossible to conduct a two-tailed test at a specified 
level of significance.  ■

Binomial DistributionBinomial Distribution (H (H : =: = . .75, 75, n = 10)= 10)
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Figure 1. Binomial Distribution for p = .75 and n = 10 

STATS SPRING 2006 FINAL.indd   12STATS SPRING 2006 FINAL.indd   12 3/20/06   4:42:07 PM3/20/06   4:42:07 PM



13STATS 45   ■   SPRING 2006

Suppose we have n = 13 observations X1, X2, ..., X13, 
and we want to test at significance level α = 5%, 
hoping to find that they came from a population 

centered above µ0. Therefore, we test H0: µ = µ0 against 
HA: µ > µ0. Not sure whether the population is normal, 
but reasonably sure it is symmetrical, we decide to try 
both the one-sample t-test and the sign test. 

The one-sample t-test rejects at the 5% level when the 
statistic 

exceeds 1.782 (based of 12 degrees of freedom).
The sign test that rejects when 10 or more of the 

observations exceed µ0 has level α = 4.6%. Because of 
discreteness, this is as close to 5% as possible. Let B 
be the number of “big” observations—ones for which 
the sign of Xi – µ0 is positive. If the symmetrical popula-
tion has its mean (and hence also its median) at µ0, then 
B ~ Binomial (13, 1/2) and P{B ≥ 10} = 0.0461.

Now suppose it turns out that one of these tests 
(narrowly) rejects H0 and the other does not reject. Eager 
for a significant result, we convince ourselves to use 
both tests and to claim significance if either test rejects 
H0. Subsequently we write a report claiming the results 
are significant. As evidence, we state the value of the test 
statistic (T or B) and the α-level (5% or 6.4%) of the test 
that rejected H0, but we omit any mention of the test that 
failed to reject. Bad idea!

Our combined procedure amounts to rejecting H0 
when either the sign test or the t-test rejects. If the null 
hypothesis is true, the probability that this combined 
procedure rejects is not 5%. For normal data, the actual 
significance level of this “either/or” procedure is about 
7%, a value that can be obtained by simulation. 

The figure below shows the results for 10,000 simu-
lated samples of size 13, each from a normal distribution 
centered at µ0 = 0. It plots the number B of positive 
observations against the T statistic:

Sometimes Two 

nS

X
T

/

0µ−
=  

4The t-test rejected H0: µ0 = 0 for the dots (samples) 
to the right of the broken vertical line at t= 1.782 
(about 5% of the 10,000 simulated samples). 

4The sign test rejected for the dots above the broken 
horizontal line at b = 9.5 (about 4.6% of them). In the 
figure, the vertical positions of the dots have been “jit-
tered” (randomly displaced) up or down by as much 
as 0.4 to help spread them apart for easier viewing. 

4The combined test rejected for the dots anywhere 
outside the large rectangle. (About 93% of the dots 
are inside this rectangle and about 7% outside.)

Tests Are NOT 
Better Than One

Figure 1. Rejection region for a combined t-test and sign test (b) test 
based on 10,000 simulated samples. The combined test would reject 
H0 if the calculated value of t is to the right of the vertical dotted line 
or if the calculated value of b is above the horizontal dotted line.

This example illustrates an important general prin-
ciple. Anytime you do multiple tests on a dataset, you 
must be aware that error probabilities can accumulate. It 
is not necessarily wrong to do multiple tests. However 
if you do, then honest statistical practice requires you to 
mention the tests that failed to reject as well as the ones 
that rejected.  ■

STATISTICAL  SN
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   Two-envelope Paradox

15

The Dilemma: 
Should you keep the 
envelope you have, 
or switch to the other 

envelope?

by Federico J. O’Reilly

The two-envelope paradox, also referred to as 
the exchange paradox or the problem of the two 

wallets, is as follows:

A benefactor places a quantity of money, Z, in 
one envelope and places twice that quantity, 2Z, in 

another envelope. The quantity Z and the identity of 
the envelope with the larger quantity are unknown to 

you. Then, the benefactor randomly selects with equal 
probability one envelope and hands it to you. The money 

is yours to keep.

The mental reasoning to get the paradoxical result 
is as follows: 

If Z is inside your envelope, then even before opening it, you might 
reason the contents of the other envelope—call it W—will be either 

Z/2 or 2Z, which, due to the random selection of your envelope, yields 
the following “expected value” for the contents of the other envelope: E [ 

W ] = ( 1/2 ) ( Z / 2 ) + ( 1/2 ) ( 2 Z ) = ( 5/4 ) Z.
 
Therefore, it would appear you should switch envelopes, if given the 

opportunity to do so, because the expected value of trading your envelope 
for the other, which you calculated to be 5/4 Z, is larger than Z.

However, the dilemma is that the same reasoning would apply when 
you are handed the other envelope! So, something is definitely wrong 

with this thinking because, after switching, it would be beneficial to 
switch again ad infinitum—an absurd outcome.
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Mine Other

Other = z/2 or 2z
Mine = Z

This is the famous two-envelope paradox that many 
authors have discussed. Looking at the web, there are more 
than 750 sites related to the problem. A few references to 
the immense amount of material on the subject are listed 
at the end of this article. An example of a thoughtful 
analysis is given by E. Schwitzgebel and J. Dever at their 
web site, which also is listed in the references. 

Apples and Oranges 
In our analysis, let’s denote by θ the actual, but 

unknown, smaller quantity of money the benefactor 
placed in one of the envelopes. This is to stress it plays 
the role of a parameter and is a fixed amount. Noting that 
the problem specifies that you are faced with the dilemma 
after the unknown quantity of money has been fixed, in 
the frame of reference of the problem, we take that at ‘face 
value,’ as is said colloquially. 

So, if you have Z in your closed envelope and you 
suppose the other envelope has Z/2 inside, since θ is 
fixed, this means your Z   =   2θ because the benefactor 
already has decided the amount 3θ was to be split in 
proportions of 1:2 in the envelopes. In contrast, if you 
suppose the other envelope has 2Z, then you have Z=θ in 
your envelope without any ambiguity. 

Observe that the value of Z is not the same in these 
two cases. However, in either case, the expected value for 
the contents of the envelope you were given, Z, depends 
on the fixed amount decided by the benefactor, θ, and is:

 Ε   ( Ζ | θ) = (1/2) θ + (1/2) 2θ = ( 3/2 ) θ.
 If we consider carefully the “pseudo-expected 

value,” 5/4 Z, we realize it was computed incorrectly. The 
mistake is “adding apples and oranges,” as mentioned 
by Schwitzgebel and Dever in their explanation. To add 
“apples and apples,” we must remember the smallest value 
for Z is θ and the sum of the contents in both envelopes is 
constant; that is Z + W = 3θ. Therefore, if Z = θ, then W = 
2θ, or if Z = 2θ, then W = θ. Either way, with θ fixed, the 
expected value of Z is equal to the expected value of W, 

E  [  Z  |θ  ]= E [ W|θ  ]   =   (3/2 )  θ. 

Because the expected value is the same whether you 
keep the envelope or switch, you should be indifferent to 
switching.

This is an intuitively satisfying conclusion as, after θ is 
fixed and knowing only the rules of the game without any 
other information, how could you prefer one envelope 
over the other?

An Inferential Point of View
Now let’s consider the problem from an inferential 

point of view. If you open the envelope and find that 
Z   =   z, it is true that logically there are two possibilities 
for W in the other envelope in terms of z. The value z 
observed, certainly implies that θ—an unknown positive 
parameter—is now known to belong to the set {   z/2, z   }, 
but that is all we know about it, except that the likelihood 
of θ is equal at both points of the set and zero outside. 
See the likelihood function in Figure 1.

So you should reason, from an inferential point of 
view, that z is a realization of Z that has exactly the same 
distribution as W. Also, knowledge of Z  =  z, even though 
intriguing, is useless as to which value of W might be 
more likely. No information about W is obtained after 
observing that Z  =  z other than the fact that now θ is 
pinned down to two equally likely values and that both Z 
and W materialize with θ fixed. Furthermore, because they 
have exactly the same distribution, the quantity W is not 
preferable over Z, observed or not. Knowing that Z   =  z 
leaves you as ignorant as before opening the envelope 
in terms of the odds (1:1) of having being handed the 
envelope with the larger or smaller quantity. Therefore, 
there is no reason to assert that, having observed Z   =   z, 
you should switch envelopes.

Decisions, Decisions 
At this point, it is worthwhile to analyze a different, 

but closely related problem. This different problem has been 
dealt with mistakenly by some authors as if it is equivalent 
to the original two-envelope problem. In this problem, 
the benefactor places an amount Z in an envelope, hands 
it to you, and you look inside to find Z  =  z. Then, the 
benefactor places either twice that amount or half that 
amount in a second envelope, with probability 1⁄2 for 
each. In this case, the expected value for the contents in 
the second envelope is 5/4 z, a legitimate expected value 
for this different problem.

Figure 1. Likelihood Function of θ.
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So the question then arises of whether you should 
switch envelopes. You may decide, for example, to switch 
in this different problem, if allowed to play the game a 
large number of times, because probabilistic reasoning 
tells us that in the ‘long run’ you will get a quantity very 
close to the expected value ‘on average.’ However, this 
reasoning relies on the repeatability of the game and the 
possibility of averaging the results. This type of game keeps 
the casinos making money, and lots of it! 

We realize, however, that if faced only once in your 
lifetime with the dilemma of staying with the known z in 
your pocket or gambling to either loose half of z or win 
another z, your decision will certainly depend on z, your 
income, and perhaps your mood. This is the subjective part 
of this type of problem.

There is a concept used in economics and in decision 
theory called “utility,” which attempts to account for a 
person’s subjective appraisal of an economic gain. The utility 
of money is perceived differently by different individuals and 
differently by the same individual, depending in his or her 
financial circumstances. A utility function generally is viewed 
as nonlinear and concave, meaning that as the amount of 
potential gain increases, the relative “utility”—one’s feeling 
of gained wealth or comfort—increases, but more slowly 
and at a decreasing rate. A logarithmic utility function can be 
used to represent a person’s preference for greater economic 
gain. Figure 2 shows an example of such a logarithmic utility 
function.

With a little algebra, we can see that in this problem 
with a logarithmic utility function, the expected utility of 
the contents of the second envelope is equal to the utility 
of the first envelope:

E [ Log W ] = ( 1/2 ) Log ( Z/2 ) + ( 1/2 ) Log ( 2Z )
 = ( 1/2 ) ( Log Z – Log 2 ) + ( 1/2 ) ( Log 2 + Log Z )
 = Log Z 

So if you accept the use of a logarithmic function 
as your measure of utility in this different problem, you 
would be indifferent to the exchange of envelopes if the 
choice is to risk z for either z/2 or 2z with equal odds.

Take the Money and Run
The illusion of a paradox was created in the original 

problem by computing an incorrect expected value by 
ignoring that the amount split between both envelopes 
is fixed. Moreover, knowledge of the contents of the 
first envelope leaves the odds of having in one’s hands 
the envelope with the larger amount exactly as before 
knowing its contents. So, there should be no preference 
for switching envelopes in the original problem.

In the different problem, the repeatability of the game 
and one’s utility for money are considerations to take into 
account. Only if the game can be repeated many times 
should there be a preference for switching. However, if 
you have a logarithmic utility function, you should still be 
indifferent.

As a personal choice, I would keep z if a kind 
benefactor offered me, say, $1 million (z   =   $1,000,000). If 
the rational decision is to be indifferent to the switch, why 
take the risk of losing z? As a humble statistician, I would 
keep the million dollars or, in fact, any amount offered. As 
is said colloquially, “A bird in the hand is worth two in the 
bush,” and as said colloquially more imperatively, “Take 
the money and run!”  ■
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A P  S T A T I S T I C S

The Least-squares Regression 
Line Is Not a Trend Line

Figure 1 shows one version of the scatterplot I 
used. It presents the values for SAT scores—math and 
verbal—for a simulated cohort of students. The math 
scores were generated randomly to reflect the national 
distribution in terms of mean and standard deviation, and 
the verbal scores were calculated so the assumptions for 
inference for regression were met perfectly: At any given 
math-value, the distribution of verbal-values is normal 
with uniform spread, centered along a linear relationship 
with the math scores. I also used a second version with 
the same data, but plotted with the verbal scores on the 
x-axis and math scores on the y-axis. Each student was 
given one of the two graphs at random.

Many teachers, me included, have used the term 
“trend line” to explain the concept of a line that 
“best fits” the points in a scatterplot. There is a 

sense that students have an innate eye for a line that 
represents the relationship between the x- and y-values 
in the scatterplot, and that this line is typically the least-
squares regression line. However, it struck me recently 
that a trend line and the least-squares line are not really 
the same thing. 

The purpose of the least-squares line is to make the 
best prediction of the y-variable for a given value of the 
x-variable. The idea of a trend line is more related to the 
pattern in the points themselves. The least-squares line is 
predicting one variable from the other, so it does not treat 
the x- and y-variable symmetrically in the equations—a 
distinction the trend line would not necessarily make. 
I wondered if students would draw a line close to the 
least-squares line if asked to draw a line on a scatterplot 
that shows the relationship between two variables. I 
decided to gather some data that might help answer this 
question.

An Experiment
To get a better sense of what students actually think 

about a line that best fits a scatterplot, I conducted an 
experiment. I gave a group of precalculus students (high 
school sophomores, juniors, and seniors) a scatterplot and 
asked them to draw the line they thought “best represents 
the relationship between x and y.” I had a notion about 
what they would draw based on activities done with them 
in the past. I expected the lines sketched by the students 
to be steeper than the least-squares line.
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Phoenix, Arizona. With a BA from Williams College and 
an MA from Teachers College, Columbia University, he 
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Now, can you imagine a line that best shows the trend 
relating the verbal and math scores? Go ahead, sketch it 
on the graph.

Figure 1. Scatterplot of Simulated Math and Verbal SAT Scores 
that Satisfy the Assumptions for Inference in Regression Analysis

STATS SPRING 2006 FINAL.indd   18STATS SPRING 2006 FINAL.indd   18 3/20/06   4:42:14 PM3/20/06   4:42:14 PM



The Least-squares Line
The goal of the least-squares line is to make the best 

prediction for the verbal score from a given math score, 
so the quantity minimized is the vertical distance between 
the points in the data and the line that models the data. 
This produces the familiar least-squares line. One of its 
properties is that it passes through the centroid of the 
data, with coordinates (mean math score and mean verbal 
score), (Math,Verbal).

The slope of the least-squares line is a function of 
three quantities: the standard deviation of the math scores 
(Smath a larger spread among the x-values flattens the 
line), the standard deviation of the y-values (Sverb a 
larger spread among the y-values tends to make the line 
steeper), and the correlation coefficient (higher values 
of r make the line relatively steeper). The formula that 
summarizes the slope of the linear equation 

Verbal = a + b . Math is  

  b = r

If r = 1, then an individual who is one standard deviation 
above the mean math score would be predicted to have 
a verbal score that is also one standard deviation above 
the mean verbal score. For values of r less than one, the 
predicted verbal score is closer to the mean verbal score. 
This is the origin of the term “regression” and the reason 
why “r” is used for the correlation coefficient.

What I Thought Students Might Draw
I have used an activity for a number of years in which 

students sketch lines on a scatterplot and calculate the sum 
of the squares of the residuals. I then have students rate 
their lines using the least-squares criteria, each summing 
the squares of the vertical distances from each of the data 
points to the line he or she drew. I have observed that 
most students made the line too steep compared to the 
least-squares line, but it occurred to me that perhaps the 
rules of the game are rigged against the students—the 
evaluation criteria is not what one’s eye tends to find 
as the best line. I thought they might be more inclined 
to draw a line with slope   Sverb /Smath,   ignoring the 
regression effect. This is the slope of a line that in a 
geometrical sense might better illustrate the trend in the points. 
With the conditions described above for this scatterplot, 
the population of points should cluster in an elliptical 
pattern, and the major axis of the ellipse would have slope
Sverb/Smath. The line that    minimizes the perpendicular 
distance from each data point to the line (a line of 
“orthogonal fit”) has this slope, and this line through 
the points is independent of which variable is x and 
which is y. 

The scatterplot in Figure 2 adds the ellipse that 
shows the density of the points, the least-squares line, 
(SATV = 199.97 + 0.6014 . SATM) and the steeper dotted 
line of orthogonal fit, (SATV = 115.27 + 0.7737 . SATM).
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What Students Drew
Twenty-three of the precalculus students were given 

this scatterplot, and the mean slope of the lines they drew 
was 0.9591. A 95% confidence interval for the slopes they 
drew is [0.9118, 1.0064]. This is steeper indeed than either 
the regression line or the line of orthogonal fit. In fact, 
neither the slope of the least-squares line nor the slope 
of the line of orthogonal fit falls within the confidence 
interval for the students’ slopes. 

Figure 2. Scatterplot with Least-squares Fit and Orthogonal Fit Lines.

Figure 3. Scatterplot with Line Fit “by Eye.”

In Figure 3, a scatterplot is shown with a line of 
the mean student slope (bold) that passes through the 
centroid (Math,Verbal). Interestingly, the student lines 
typically were close to this point, with the mean vertical 
difference between the student lines and the centroid less 
than one unit and standard deviation about 20 units.

So, what was the slope of your line? Was it more 
like the regression line, the orthogonal fit line, or 
my students’ lines?

.
Sverb
Smath
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Switching the Axes
Another group of 24 precalculus students was given 

a scatterplot with the data axes switched, so that the math 
scores were on the y-axis. Whether students received this 
form or the first form was determined randomly.

The regression equation of the least-squares line 
for the math scores as the response is (SATM = 53.38 
+ 0.8741.SATV), and the equation of orthogonal fit is 
(SATM   =   -   149.00   +   0.2926   .   SATV). The students’ lines 
had mean slope 1.0429, standard deviation 0.1619, and 
a 95% confidence interval [0.9746, 1.1113]. As in the 
previous case, the slope of neither the least-squares line 
nor the line of orthogonal fit falls in this confidence 
interval, but this time the slope of the students’ line 
is between the slopes of the other two. Figure 4 is 
a scatterplot that shows the least-squares line, the 
dotted line of orthogonal fit, and the bold line of 
mean student slope.

Comparing the Graphs
Taking a good look at the two graphs above, with the 

axes switched, makes for some interesting comparisons. 
First, note that the line of orthogonal fit in the second 
graph is the inverse function of the line in the first graph. 
This must be the case, as it passes through the centroid 
and its slope is the ratio of the standard deviations. Its path 
through the points is exactly the same. 

More surprising to me is the comparison between 
the typical lines drawn by the students in each of the two 
cases. Such as the line of orthogonal fit, these are nearly 
inverse functions of one another, following roughly the 
same path through the points. It seems students have 
some sense of the line that comes from the geometry of 
the points, rather than which is x or y.

More Research?
There are a number of open questions in my mind as a 

result of this investigation. First, are my results replicable? I 
encourage you to try this experiment with your classmates 
and send me the results. Second, to what extent are these 
results determined by the particular scatterplot I have 
chosen to use here, with correlation 0.725. Would a set of 
points with a higher or lower correlation produce similar 
results?

The Least-squares Line Is Not a Trend Line
In this experiment, students typically chose slopes for 

the line that “best represents the relationship” between 
two variables that are different from that of the least-
squares line. This tendency reinforces my belief that 
teachers should emphasize the prediction aspect of the 
least-squares line and avoid the term “trend line.” This 
distinction may be subtle, but may help students gain a 
deeper understanding of the idea of a model that predicts 
one variable from the value of another.  ■

Figure 4. Scatterplot with SAT Verbal and SAT Math Interchanged. 
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S E C T I O N

Computing Normal Tables 
and a Slice of π

The probability that you will wait more than 20 minutes, 
P{W > 20} = P{20 < W ≤ 30}, is represented by the area 
of the shaded rectangle with the interval (20, 30] as its 
base and height 1/30. This area is easy to calculate: 

Area = Width × Height = (30–20) (1/30) = 1/3.

Question 2. Next, we look at a problem that can be 
solved on an ordinary calculator. Suppose a population 
of electronic components has exponentially distributed 
lifetimes with a mean of two years. Your company offers 
a warranty to replace components that fail within the 
first year. What proportion of these components will be 
eligible for replacement under the warranty?

Answer. The density function for this exponential 
distribution is ƒ(t) = (1/2) e¯t/2, for t ≥ 0. (For t < 0, the 
density function is 0 because it is impossible to have 
a negative lifetime.) See Figure 2. Whether you’ve seen 
exponential distributions before or not, the main fact 
of interest here is that there is a formula for finding 
probabilities of intervals (areas under the density 
curve): For a random variable T with this exponential 
distribution, P{0 < T ≤ t} = P{T ≤ t} = 1 – e¯t/2, where 
e = 2.71828 is the base of natural logarithms and t   ≥   0.

In many practical applications of statistics and 
probability, we need to find the probability associated 
with an interval. Some of these probability computations 

are easy and others are quite challenging. And sometimes 
questions that are easy to ask lead to computations that 
are not so easy to perform. Here, we explore a variety of 
useful computational methods, including several based 
on simulation.

Probabilities of Three Intervals
Question 1. We start with a problem so easy you 

can do the computation in your head. Suppose, visiting 
a strange city, you have just arrived at the platform to 
catch a commuter train. You know trains run every half 
hour, but do not know the time schedule. What is the 
probability you will have to wait more than 20 minutes?

Bruce Trumbo (bruce.trumbo@csueastbay.edu) is 
Professor of Statistics and Mathematics at California State 
University, East Bay (formerly CSU Hayward). He is a 
Fellow of ASA and holder of the ASA Founder’s Award.

Bruce Trumbo

R U  S I M U L A T I N G

Answer. Your waiting time W (in minutes) can be 
expressed as a uniform random variable on the interval 
(0, 30]. Its rectangular density function is shown in 
Figure 1. As with all density functions, this one includes 
a total area of 1 and areas correspond to probabilities. 

Figure 1. If W has a uniform distribution on the interval (0, 30] 
then P{W > 20} = 1/3.

Figure 2. If T has an exponetial distrivution with E(T  ) = 2 years, 
then P( T ≤ 1) = 0.3935.
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So our answer is P{T ≤ 1} = 1 – e¯1/2, = 0.3935. The 
relevant area, shaded in Figure 2, can be found with a 
few keystrokes on a calculator or in R with the code 
1 – exp(–1/2). (If you are wondering how your 
calculator or R might compute the exponential function, 
see the challenge at the end.)

Question 3. Here is a problem that can be solved using 
tables of the standard normal distribution. Suppose scores 
on the ABC college admissions test are approximately 
normally distributed with mean 300 and standard deviation 
70. Also suppose that State University accepts students 
who score higher than 370. According to this policy, what 
proportion of those who take the ABC test is eligible for 
admission?

How then are normal probabilities computed? Let’s 
explore several answers to this question. As our primary 
example, we will consider how to calculate P {0 < Z ≤ 1}, but 
the methods we show can be used to find the standard 
normal area in any finite interval—and they also can 
be used for problems that do not involve the normal 
distribution.

Figure 3. The area shown is P{ 0 < Z  ≤  1} = 0.3413. There is no 
simple formula for finding areas under a normal curve.

Answer. According to the Empirical Rule, for normally 
distributed data, about 2/3 of the population scores will be 
within one standard deviation of the mean. So about 1/6 of 
the scores will be more than one standard deviation above 
the mean. Thus, a rough answer is 16.7%. But let’s assume 
the distribution of scores X is exactly NORM (300, 70). 
Then, P{X > 370}   =   P { Z  > 1} = 0.5  –  P { 0 <  Z  ≤ 1}, where 
Z is standard normal.

Tables of the normal distribution come in various 
styles. Some give the probability that a standard normal 
random variable Z is between 0 and a chosen value z in 
the margin of the table. In particular, P {0 < Z ≤ 1} = 0.3413, 
the area illustrated in Figure 3. So the answer to our 
question is P { X > 370 } = 0.5 – .3413 = 0.1587. 

How Are Normal Tables Computed? 
Normal tables can be found in almost every basic 

probability and statistics book. You may have taken 
them for granted, never thinking about how they are 
computed. The density function for the standard normal 
distribution function is ϕ(z) = (2π)¯1/2 exp(–z2/2). But the 
normal distribution is unlike the uniform and exponential 
distributions: There is no simple formula for calculating 
areas under the standard normal density curve. 

Approximation by rectangles. Figure 4 shows the 
standard normal density function ϕ (z) over the interval 
(0, 1) along with five rectangles whose areas sum to about 
the same area as that shaded in Figure 3. The dotted lines 
at the center of each rectangle (that is, at z = .1, .3, .5, .7, 
and .9) are exactly the same height as the function ϕ  (z). 
The base of each rectangle is 0.2 units wide. 

In R, we can designate the list of these grid points by 
z <- c(.1, .3, .5, .7, .9) Also in R, the standard 
normal density function ϕ is denoted by dnorm. That is, 
dnorm(.1) is just a short way to write

(1/sqrt(2*pi))*exp(-.5*(.1)^2) 

The sum of the areas of these five rectangles is computed 
by sum(.2 * dnorm (z)), which returns 0.341749. 

We see that approximating P(0 < Z ≤ 1) by the areas 
of only five rectangles gives two-place accuracy. If we use 
more and narrower rectangles, we can get any desired 
degree of accuracy. The brief program in Figure 5 shows 
how to use m = 1,000 rectangles to get six-place accuracy. 
Essentially, that’s how normal tables are made.

m <- 1000       # number of grid points
a <- 0; b <- 1  # interval endpoints
w <- (b - a)/m  # rectangle width
z <- seq(a+w/2, b-w/2,length=m) # grid
h <- dnorm(z)
sum(w * h)    # sum of rectangle areas

Figure 5. R code that accurately evaluates P { 0 < Z ≤ 1} with 
1,000 rectangles.

Figure 4. The combined area of five rectangles is 0.347, roughly 
approximating P { 0 < Z ≤ 1}.
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Monte Carlo integration. It is surprising that instead of 
choosing the points z as equally spaced on a grid, as in Figure 
4, we can choose them at random in the interval of interest. 
We can do this by changing the fourth line in Figure 5 to 
z <- runif (m, a, b).

However, to get reasonable accuracy, we now need 
to use many more values of z. (And, of course, now w 
has to be interpreted as the “average” distance between 
randomly chosen points.) Because this is a random 
process, we will get a slightly different result each time 
we run the program, but with a million randomly chosen 
points, the answers are typically correct to three or four 
places. On three runs, we obtained 0.3413244, 0.3413972, 
and 0.3413329.

The term Monte Carlo, after a city in southern 
Europe famous for its gambling casinos, often is used 
as a synonym for simulation. Here, the term integration 
means finding the area under a curve. In problems where 
one must consider multidimensional random processes, 
the random values of Monte Carlo integration are easier 
to program than a grid. And they also can give more 
accurate answers. Here is an intuitive explanation. In 
our approximation by rectangles in Figure 4, our grid 
produced only one “ragged edge” to cause errors; it’s 
along the top. But in many dimensions, ragged edges 
and surfaces can proliferate in many directions to become 
a serious problem. Random points don’t lie on a fixed 
grid, but they can be programmed to stay precisely inside 
designated boundaries.

Alternatively, you can use R as a table of the 
standard normal distribution and get the exact answer with 
pnorm(1)- pnorm(0), where pnorm (with only one 
parameter) stands for the standard normal cumulative 
distribution function Φ(z) = P {Z  ≤  z}. But, in the 
background, the pnorm function is doing something 
similar to approximation by rectangles to get the answer. 
Note: When a mean other than 0 and a standard 
deviation other than 1 are specified as its second and 
third parameters, respectively, pnorm is the cumulative 
distribution function of a general normal distribution. 
Thus, we could have answered Question 3 directly with 
the R code 1 - pnorm (370, 300, 70).

Now for That Slice of π
The unit circle z2 + h2 = 1 has area π = 3.1416, so 

the pie-shaped region of the unit circle where z  >  0 and 
h > 0 (its first quadrant) has area π/4. See Figure 6. 
Multiply by 4 and we have an approximation of π. The 
total area of the rectangles is 0.792997, so the resulting 
estimate of π is 3.171988.

If we substitute the next-to-last line of Figure 5 by 
h <- sqrt(1 - z^2) using 1,000 rectangles, we can get 
an approximation of π that’s accurate to four places. 

Next, we return to evaluating probabilities in order 
to illustrate some methods of simulation. Two of the 
methods we describe in the next section also can be used 
to get “random approximations” of π .

Three Simulation Methods
Consider again the evaluation of P{0 < Z ≤ 1}. Even 

though approximation by rectangles is a better method 
for solving this simple problem in practice, just for 
fun we will show how to solve it with three methods 
of simulation. (Well, to be honest, this is not entirely 
recreational. Each of these methods is of practical 
importance in more advanced probability modeling. 
At the end of this section, we solve a slightly more 
complicated problem where simulation is necessary.)

Figure 6. Approximation of π/4 with five rectangles.

Figure 7. The proportion of 10,000 random points in the rectangle 
that fall below the standard normal density curve, the ‘accepted’ 
points, can be used ot approximate P{0 < Z ≤ 1}.

Acceptance-rejection method. Another simulation 
method for finding P{0 < Z ≤ 1} is to surround the 
desired area by a rectangle of area 0.4, put a large 
number of points at random into this rectangle, and 
find the fraction of points that falls beneath the density 
curve—the ‘accepted’ points. For example, Figure 7 shows 
8,515 accepted points out of 10,000 random points, so 
the estimate of the desired probability is 0.4(0.8515) = 
0.3406. Three successive runs with a million randomly 
chosen points gave the estimates 0.3413884, 0.3414704, 
and 0.3411264. With this large number of random points, 
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the simulated value is 95% sure to lie in the interval 
0.34134 ± 0.0003. The acceptance-rejection method is 
a relatively inefficient way to evaluate simple normal 
probabilities, but like Monte Carlo integration, it can be 
useful in more complicated situations.

Approximation by sampling. Sometimes it is possible 
to simulate a large sample from a population with the 
desired distribution. For example, the R function rnorm 
produces values sampled at random from a normal 
distribution. We could simulate the answer to Question 
3 by sampling from the distribution NORM (300, 70) and 
then asking what percentage of the values are greater than 
370. The following R code implements this method. 

x <- rnorm(100000,300,70)
mean(x > 370)
Here, (x > 370) is a list of 100,000 TRUEs and 

FALSEs, and the mean function returns the proportion of 
TRUE results. Three runs gave estimates 0.15945, 0.15886, 
and 0.15764. Recall that the correct answer is 0.1587, so 
we are getting about two-place accuracy. Larger samples 
would give better accuracy.

Question 4. In practice, the sampling method would 
be poor to use for Question 3, but this method is 
useful in a situation where we don’t know the density 
function of the desired random variable. Suppose the 
total time in microseconds (µs) it takes for a particular 
computer instruction to be completed is the sum S of three 
independent waiting times: U distributed uniformly on the 
interval (0, 70), V distributed exponentially with mean 10 
(rate 1/10), and W distributed normally with mean 20 and 
standard deviation 2. What proportion of such instructions 
takes longer than 100 µs to complete?

1. Computing π. Use 10,000 rectangles to approximate π. 
In R, the code pi is reserved for the constant π. Type pi 
to compare your approximation with the result. To how 
many places is your approximation accurate?

2. Simulating π. On our web site, we show our code for 
using Monte Carlo integration and the acceptance-rejection 
method to evaluate P{0 < Z ≤ 1}. Modify these programs 
so you can use each of these methods to simulate π.

3. Simulating √2. Suppose you do not know the value 
of √2. Can you use probabilities and the sampling method 
to find it? One possibility: Let U have a uniform distribution 
on (0, 1) and X = U2. Then, simulate a million values of 
X and use the fact that 2P{ 0 < X ≤ 1/2 } = 2P{ 0 < U 
≤ 1/√2 } = 2/√2 = √2. Compare with sqrt(2) (With 
basic probability methods, one could find the density 
function of X. But it involves √2, so density-based 
methods—such as approximation by rectangles, Monte 
Carlo integration, and acceptance-rejection—are not 
applicable here.)

4. Computing the exponential function. You might 
wonder how a calculator (or R) calculates exponential 
functions. One method is based on the “series expansion” 

ex = exp(x) = x0/0! + x/1! + x2/2! + x3/3! + ... . 

In theory, the sum on the right-hand side continues 
forever, but, in practice, the terms get small fast because 
the factorials in the denominators get large fast. So it is 
often enough to sum only the first few terms of the series. 
For example, in calculating e  –1/2 = 0.6065, we can get 
four-place accuracy with only the first six terms.

e–1/2   ≈   S6(
–1⁄2) = 1 – 1⁄2 + (1⁄2)

2
/2 – (1⁄2)

3
/6 + (1⁄2)

4
/24 – (1⁄2)

5
/120.

In R, S6(–
1⁄2) can be computed as:

n <- 0:5; sum((-1/2)^n/factorial(n))
[1] 0.6065104

How many terms are needed for five-place accuracy? That 
is, find the smallest n for which |Sn(-1⁄2) – e–1/2|<0.000005.

Another method: As n increases to infinity, the limit of 
Bn(x) = (1 + x/n)n is ex. For values of n that R computes 
easily, Bn(x) can provide useful approximations for some 
values of x. With this method, about how large does n need 
to be in order to get four-place accuracy for e  –1/2 ?

Formulas for methods based on Sn(x) and Bn(x), among 
other approximations, have been programmed into the 
exponential functions in calculators and statistical software. 

Answer. Of the methods we have discussed here, 
the only one that works for this question is to simulate a 
sample. The required R code is
m <- 100000; u <- runif(m, 0, 70) 
v <- rexp(m, 1/10); w <- rnorm(m, 20, 2)
s <- u + v + w; mean(s > 100)

Figure 8 shows a histogram of the simulated distribution 
of the total waiting time S. The answer is that about 5.3% of 
the instructions take longer than 100 µs to process. While 
it is not feasible to do a direct analytic computation of 
P{S > 100}, basic probability rules show that 

E(S) = E(U) + E(V) + E(W) = 35 + 10 + 20 = 65.

Figure 8. Distribution of processing times simulated by the sampling 
method.
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and to my student Alain Valois for helpful comments. Some 
parts of this column are similar to examples to be included 
in a forthcoming book by Suess and me on simulation and 
estimation.

Challenges: Exploring on Your Own 
As usual for this column, the full R code for our 

computations and simulations is shown at www.amstat.org/
publications/stats/pdfs/stats44.pdf. 

We hope you will follow through what we have done on 
your own—and then try the challenges below.

So the additional code mean(s) provides a ‘reality check’ 
for our simulation: Typical answers are in the interval 
65.00 ± 0.15
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ASK STATS

Question: I have been thinking about a career teaching statistics. 
Why should I consider teaching at a small liberal arts college 
rather than a big state school?

Jackie Miller (miller.203@osu.edu) is a Statistics 
Education Specialist and auxiliary faculty member in the 
Department of Statistics at The Ohio State University. She 
earned both a BA and BS in mathematics and statistics 
at Miami University, along with an MS in statistics and a 
PhD in statistics education from The Ohio State University. 
She is very involved in the statistics education community. 
When not at school, Miller enjoys a regular life (despite 
what her students might think), including keeping up with 
her many dogs! 

Hey Professor Cuff...

Carolyn K. Cuff (left) teaches statistics 
and mathematics at Westminster College 
in New Wilmington, Pennsylvania. 

One of the more memorable dissertation 
presentations I have seen was in the area of graph 
theory. The doctoral candidate drew a complicated 

graph with lots of connections and weights on the edges 
indicating distance. “This graph represents the path my 
work has taken. The final edge connecting the first node 
with the last is actually not that far from where I started. I 
just visited many other nodes along the way.”

Imagine such a graph with its numerous branches 
and even an occasional dead end and you could be 
mapping out my career path. My current title is Professor 
of Mathematics at Westminster College, a small liberal arts 

Jackie Miller

college—the same college I went to years (and nodes 
and jobs) ago. My main area of teaching responsibility 
is statistics, and my graduate degrees are in operations 
research. If you are considering a career teaching at a 
liberal arts college, let me give you an idea of the path 
I have taken, the role that statistics has played in what I 
have done, and why I have stayed at this job.

As a student, I went to a liberal arts college because my 
parents and their parents had gone to liberal arts colleges. 
Once there, I had a great time studying mathematics, 
computer science (which was in its infancy at the time), 
religion, and art. I majored in mathematics, had a minor in 
computer science, and almost finished a major in religion. 
I took enough art history courses to capably bore my 
children in major art galleries in the United States and 
Europe. I traveled to France to become more fluent in 
French and the U.S. Virgin Islands to study ecology. 

When I finished my undergraduate degree, I 
worked for three years as an accountant for one of the 
largest Fortune 500 companies. The plant I worked in 
manufactured specialty items; most of the rest of that 
portion of the company mass produced products. As 
a result, it had different inventory problems than other 
plants. One of the more memorable projects sought 
to determine approximately how much—measured in 
dollars rather than units of inventory—some of our 
smaller suppliers provided us during the course of a year. 
Paper records in a large file drawer indicated units and 
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total dollar amount. My boss did not like my idea of a 
stratified sample; he wanted a complete census. From 
undergraduate statistics, I knew the census was going to 
be tedious and not give us a better approximation than my 
sampling would. A week later, at the end of the project, I 
had an okay approximation, a headache, and the decision 
to move on.

I decided to go back to graduate school in operations 
research at Case Western Reserve because I was married 
and already living in Cleveland. The coursework for the 
degrees included lots of statistics and, of course, lots 
of modeling courses. The graduate program was small 
enough that the transition from a small school to graduate 
school was easy. I struggled more than my fellow students 
with the early courses, as they often had similar courses 
in their previous graduate work. Once I finished the first 
year, the mathematical rigor increased and I not only 
caught up with my fellow students, they were coming to 
me with questions. 

I was fortunate enough to have an internship at 
another major company while working on coursework 
for the degrees. The internship included costing of copper 
mining and refining, scheduling oil tankers, and designing 
elevator systems. The mathematics of the projects always 
included mathematical programming and statistical analysis 
of the results.

I had my first child before I finished the dissertation 
and left the internship to teach MBA quantitative analysis. 
(I think I was probably awful the first two years. Maybe 
some of my students learned some statistics, though.) I 
was hired at the Katz School of Business at the University 
of Pittsburgh, where I did research in vehicle routing (my 
dissertation area) and taught for three years. I realized 
early on that I was enjoying teaching much more than 
I was enjoying research. And that’s not to say I was not 
enjoying the pure research—my heart just was not into it. 
So, I began to rethink my goals and values and realized 
teaching was more important. Westminster needed an 
applied mathematician and asked me to interview. Aside 
from the finances of the position, they made me an offer 
I could not refuse. I did not. Then, the professor teaching 
statistics at the college suddenly retired and I found myself 
teaching statistics.

As a statistician at a liberal arts college, I have 
been called on to help students in the natural sciences 
design statistically better experiments, professors in the 
education department analyze national qualifying exam 
results for their pre-service teachers, professors in the 
communications department explain “curious” lottery 
results, and colleagues design a better statistics and 
mathematics curriculum. So you can see that professors 
at liberal arts colleges interact with a range of students, 
other professors, and ideas. We are expected to continue 
learning and to instill the joy of learning in our students. 
In the past month, I have cultivated this love of learning 
by attending lectures on new techniques in green 
chemistry, international trade law, financial development 
in post-communist Hungary, and the chemistry of enzyme 
production.

A student graduating in statistics who wants to 
be respected immediately as a statistician will get that 
opportunity at a small college. The support system 
extends nationwide. Phones and email have made staying 
in contact and making new contacts easy. If you are a 
student of statistics who is interested in teaching at a 
liberal arts college, learn to demonstrate your interest in 
a variety of problems. If you are in a graduate statistics 
program, ask to work on at least one project that requires 
in-depth data analysis or application of basic statistics in 
an unfamiliar field, such as exposure of local children 
to lead or tracking of calls at a crisis intervention center. 
Make an effort to learn all you can about that field. Later, 
it will be good interview material and provide classroom 
stories. 

On the other hand, if you are an undergraduate 
majoring in something besides statistics, consider taking 
additional courses beyond your required statistics course. 
Rarely does a first course in statistics provide the depth 
and extent of possible connections between a particular 
major and the use of statistics. Ask your statistics professor 
to direct you to articles showing applications in your 
major and surf the data and story library, lib.stat.cmu.edu/
DASL, or Chance News, at www.dartmouth.edu/~chance/
chance_news/news.html, for interesting statistics uses.

As the information age marches ahead, understanding 
statistics and the analysis possible with statistical techniques 
will continue to become more important to everyone—the 
social scientist, the historian, the accountant, the chemist, 
the human rights worker. I have never heard any of my 
colleagues in other departments say, “Those professors 
who told me statistics would be important were wrong... 
Now that I know more about my discipline, I am sure 
statistics is not important for my work.... Gee, I wish I 
would have taken less statistics.”

Perhaps the financial rewards are not as great here as 
somewhere else, but the personal rewards of teaching at a 
liberal arts college have made it all worthwhile. ■

Carolyn K. Cuff is a professor of mathematics and 
chair of the Department of Mathematics and Computer 
Science at Westminster College. Her web site is located at 
www.westminster.edu/staff/ccuff.  

As the information age marches ahead, 
understanding statistics and the analysis 
possible with statistical techniques will 
continue to become more important to 
everyone—

“ “
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Chris Olsen (colsen@cr.k12.ia.us) teaches mathe-
matics and statistics at George Washington High School 
in Cedar Rapids, Iowa. He has been teaching statistics in 
high school for 25 years and has taught AP statistics since 
its inception.

S T A T I S T I C A L   – S I N G Sµ

Spring Cometh! 
Will Extreme Measures Be Necessary?  

Chris Olsen

Ah, yes, impending spring! Mother Nature once again 
keeps her annual promise of consistently positive 
Celsius values. Post Valentine’s Day young ladies’ 

thoughts turn to spring fashions, young gentlemen once 
again consider the possibility of the Cubs winning the 
World Series, and all over the animal kingdom mates are 
thinking of mating. What a slam-dunk wonderful time of 
year! 

However, as I repose here with my 
computer, spring is only remotely 
impending and, frankly, except for 
that presumed Celsius upswing, 
things do not look all that 
good. Impending doom seems 
more like it. Let’s consider the 
evidence. The hurricane season, 
after rampaging all over the 
Deep South, is about to go into 
the Greek alphabet; levees are 
failing in New Orleans; a tsunami 
recently reared its ugly head in 
the Western Pacific; and rocks are 
moving ominously on Mt. St. Helens 
in the Western United States. I am waiting 
for somebody to announce his or her new 
movie “Apocalypse Soon.”

Oh, sure, I can hear the statisticians now, throwing 
around that probability lingo: “Well,” you say, “these 
events are outliers in the great data stream of life. Every 
once in awhile, there is a purely accidental conjunction 
of events, like Mars and Venus lining up. Doesn’t mean a 

thing, nothing to worry about.” Uh-huh. Right. Remember 
Jurassic Park? Remember those ominous thumps? Water 
shaking in the glass, tremors in the ground, and the 
next thing you know, there is a T. Rex in your rear-view 
mirror. 

Where was I? Oh, yes—impending spring. Now, I 
happen to live in Iowa, named after the Ioway Indians, 
17th-century inhabitants. “Iowa,” for the uninitiated, is an 

Ioway word meaning “trapped between the two biggest 
rivers in North America and, now that you mention 

it, not all that far from the New Madrid seismic 
zone.” (The Ioway could really pack a lot of 
information into their words.) So it is natural 
that my thoughts might turn to spring...
flooding. 

Let’s consider the recent hydrologic 
history. A monster of a flood occurred 
in 1927. The Mississippi started rising 
in August 1926, reached flood stage at 

Cairo, Illinois on New Year’s Day, 1927, 
and remained at flood level for more than 

153 consecutive days. It shattered levees from 
Illinois to the Gulf of Mexico and inundated 27,000 

square miles of land. Then, in 1993, came another 
huge flood. According to NOAA (an Ioway word meaning 
“National Oceanic and Atmospheric Administration”), 
from May through September of 1993, major and/or 
record flooding occurred across the Dakotas, Nebraska, 
Kansas, Minnesota, IOWA, Missouri, Wisconsin, and 
Illinois. Hundreds of levees failed along the Mississippi 
and Missouri Rivers. 

So you can see why a contemplation of spring is a 
bit worrisome. But rather than curse the darkness, maybe 
a better strategy would be to light a candle of statistical 
hope. Perhaps I could estimate the probability of rare flood 
events and get a seriously small number? Thus reassured, 
I could have sleep-filled, pre-spring nights. But how does 
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problem. Instead of waiting in fear, I am 
busily quantifying my risk. It has, by the 

way, occurred to me that the garden 
variety thoughtful analyst would 
probably like a place to work that 
isn’t in danger of being overrun by 
dolphins, so I checked around for 
a place to retreat to—just in case. 
I typed the phrase “places where 
it never even thinks of flooding” 
into my browser and came up with 

quite a few sites in the southwestern 
United States. 

Not wanting to be too far from 
cornfields, I rejected desert areas and I 

pretty much settled on some lakefront property in 
California. I’m not really familiar with California, but what 
I’ve found is a little place near San Francisco right off 
Interstate 280 with what the web site claims is “beautiful 
scenery and inexpensive land.” When spring comes and 
my fellow Iowans are worrying about rising water to 
the east and west, I will be swaying in my hammock, 
thanking Mr. Gumbel, and living without worry one! So, 
dear reader, if as you read this, your newspapers are 
filled with stories of flooding in the Midwest, join me 
in living free of fear! I will be having my mail sent to 
General Delivery, San Andreas Lake, California. Gosh, I 
should have thought of this a long time ago!  ■

References
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Figure 1. Gumbel Distribution.

one analyze flood data? I suspect that 
1927 and 1993 are renegade data points, 
outliers in the stream of life (as it were), 
a couple of those troublesome points 
that cloud one’s confidence in estimating 
the mean flood stage level. Hmm, now 
that I mention it, I am not actually 
worried about the “average” amount 
of flooding—my concern is about the 
worst-case scenario, the “how bad could 
it be?” question. I am interested not in 
the mean cubic feet per second, but the 
maximum cubic feet per second in, say, 
a random half-millennium (i.e., the “500-
year flood”). Are there any statistics that 
can be used here?

Well, as it turns out, the answer is 
yes. In my efforts to reduce my worries 
about spring, I stumbled upon something 
called “extreme value statistics.” Engineers 
apparently use these statistics—backed up 
with a fair amount of theory—when they 
design buildings, bridges, etc. Offshore 
oil rigs need to withstand the largest 
waves, tall commercial buildings need to 
withstand the fastest winds, and levees 
and dams need to stand up to the 
largest floods. Aha! Just what I’m 
looking for.

Initial scratching at the 
surface of this topic led to 
tossing out the mean as a 
measure of interest—and 

with it my good friend the Central Limit 
Theorem. With further scratching and  
consultation with Enrique Castillo’s Extreme 
Values and Related Models with Applications 
in Engineering and Science, I found some 
new statistical friends—ones that inhabit the, shall 
we say, more extreme regions of statistics. They 
seem friendly enough, even though they use statistics 
that have distributions with strange density functions and 
names such as Gumbel, Frechet, and Weibull. As nearly 
as I can tell, on which of these distributions you choose 
to hang your analytical hat depends on whether your 
disaster du jour comes in packages of small numbers (e.g., 
weakest link in a chain) or large (e.g., maximum highway 
traffic intensity). If you were estimating minimal values, 
you might use the Weibull distribution; if maximal values 
are more to your taste, the Frechet distribution might be 
used. In my newfound position as a budding disaster 
analyst of events of the more hydrological variety, I 
grabbed onto the Gumbel distribution immediately—it 
was applied originally to estimating flood levels!

It was at this point that I began to think I was really 
onto something good, and my spirits lifted considerably. 
So rather than hiding under my bed waiting for the 
spring deluge, I am considering a fresh approach to this 
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