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8th Annual Student Paper Competition

The Biopharmaceutical Section of the American Statistical Association announces its 8th Annual 
Student Paper Competition for papers presented by students at the 2001 Joint Statistical 
Meetings in Atlanta, GA, August 5–9, 2001. Double-blind judging of the papers by the Awards 
Committee is based upon four categories: relevance, contribution, clarity, and applications, as 
motivated by problems in the different areas of biopharmaceutical research. Papers that include 
practical examples are particularly valued. A list of previous student winners and paper titles 
can be found at www.best.com/~asabp/award.htm. Typically three to five awards are given each 
consisting of a plaque and $1,000. In order to enter the competition and be eligible for an 
award, the student must be:

• An ASA member (or must join at the time of abstract submission).
• A degree candidate (bachelors, masters, doctorate) during the 1999-2000 and/or 2000-2001 
academic year.
• The first author of the abstract and paper that is submitted for presentation at a contributed 
paper session of the Biopharmaceutical Section.
• Willing to attend and present the paper at the 2001 JSM.

Submit the abstract to ASA by February 1, 2001 (use the official ASA form and check off the 
Biopharmaceutical Section box).

Submit the manuscript and endorsement of the advisor or department head indicating the 
studentʼs contributions to the paper by May 1, 2001, to the Biopharmaceutical Section Program 
Chair:

Keith A. Soper, Ph.D.
Director, Biometrics Research
Merck & Co., Inc.
WP37C-305
West Point, PA 19486
e-mail: keith_soper@merck.com
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As I write this editorial column, we are completing 
our fall semester and none of us could have 
foreseen the daunting task of counting ballots in 
the State of Florida and its national repercussions. 
In forthcoming volumes, the statistical issues 
associated with counting, recounting, and manual 
recounting of ballots will become a common 
theme. In this edition of STATS, we explore the 
topic of proper treatment of observations that are 
missing. To place this topic in the context of an 
election, what would one do if the ballots from an 
entire precinct were lost, destroyed, etc.?

How should you analyze data when 
observations are missing? What assumptions or 
strategies are involved when values are inserted for 
missing observations? The insertions are imputed. 
Fiona O’Callaghan presents an interesting and 
timely discussion of multiple imputation. She 
discusses the concepts and strategies behind 
imputation as well as the use of a major statistical 
package, SOLAS. I recommend that you try the 
online guides available through SOLAS to become 
facile in this emerging area of imputation.

Let me recommend that everyone in our 
profession read with care and consideration the 
article entitled, Some Advice for Advisors. The article 
confronts the issues of advising from the eyes of 
our underrepresented students, i.e., Women, 
African, Hispanic, and Native Americans. 

The authors note that the article evolved from a 
roundtable discussion at an Eastern North 
American Regional (ENAR) meeting of the 
International Biometric Society. They propose that 
advisors can serve a much greater role for the 
underrepresented student by acting as mentors. 
Since the workforce of the future will consist of new 
workers, who are less likely (15%) to be white 
males, this is a message that should be embraced by 
the entire statistics community. Note that seven of 
the eight authors from this roundtable discussion 
are members of underrepresented groups. This 
article reflects the theme of the Joint Statistical 
Meetings (JSM): “Celebrate Diversity in Statistics.” 

Rudy Guerra, an associate editor of Stats, adds 
some helpful comments for advisees and an 
alternative perspective for our readers.

Column Articles

In this issue, we present a Student Project by 
Dominique Shelton of Health Careers High School 
in San Antonio. She discusses the effects of gender 
and color in short term memory. This application 
of statistical methods into the domain of cognitive 
psychology explores the transfer of sensory storage 
of a stimulus into short-term memory. To see what 
effects gender and color have on memory transfer, 
please read her contribution.

Bob Stephenson in the AP STATS column 
explores the concept of generating sampling 
distributions of statistics. Bob’s discussion, which is 
directed at our audience of AP Statistics teachers 
and students, follows on the heels of Albert 
Madansky’s article in the preceding volume. Try the 
class activities and see new ways to teach and 
convey fundamental inferential concepts.

The Outlier…s column discusses outliers in a 
variety of common situations. From outliers in 
elections, to outliers in birth and death rates, to 
outliers in athletic performances, Allan Rossman 
presents many new and challenging exercises. Try 
your hand at estimating the likelihood of some 
performances of Tiger Woods.

The Biopharmaceutical Section of the 
American Statistical Association has announced its 
8th Annual Student Paper Competition for papers 
presented by students at the 2001 Joint Statistical 
Meetings in Atlanta, GA, August 5–9, 2001. Papers 
that include practical examples are particularly 
valued. To enter the competition and be eligible for 
an award, please see the announcement in this 
issue.

Editor’s Column

Jerome P. Keating
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Missing data is a problem that confronts every 
data analyst. Missing values lead to less efficient 
estimates because of the reduced size of the 
database, and standard complete-data methods of 
analysis no longer apply. For example, analyses 
such as multiple regression use only cases that 
have complete data, so including a variable with 
numerous missing values would severely reduce 
the sample size.

Different values in a dataset may be missing 
for different reasons. A laboratory value might be 
missing because it was below the level of 
detectability, above the level measurable by the 
assay, not done because the patient did not come in 
for a scheduled visit, not done because the test 
tube was dropped or lost, not done because the 
patient died or was lost to followup, or numerous 
other possible causes.

Until recently, the only missing-data methods 
available to most data analysts have been relatively 
ad-hoc practices such as list-wise or pairwise 
deletion, which omit entire records, or pairs of 
variables, with missing values.

These ad-hoc methods, though simple to 
implement, have serious draw-backs which have 
been well documented. For example, list-wise 
deletion, or complete-case analysis, is easy to 
implement, but it is inefficient, discarding data is 
bad, and the complete cases are often a biased 
sample as there may be systematic differences 
between responders and non-responders.

Single Imputation refers to any method whereby 
each missing value in a dataset is filled in with one 
value, yielding one complete dataset. The 
important disadvantage of single imputation is that 
the single value being imputed cannot itself reflect 
the uncertainty about the actual value. The 
imputed dataset will fail to provide accurate 
measures of variability because subsequent 

analyses would fail to account for missing-data 
uncertainty.

For example, consider mean imputation: if we 
have two variables X1 and X2, and X2 contains 
some missing values, then one possible imputation 
method would be to calculate the mean of the 
observed values in X2 and substitute this for the 
missing values (see Figure 1 below).

Imputing the mean would systematically 
underestimate the variability of the resulting 
imputed distribution because there would be no 
residual variance. Also, the correlation between X1 
and X2 would not be maintained.

Another example is regression imputation, 
where the missing values in X2 are imputed by 
filling in the predicted values from a regression of 
X2 on X1 (Figure 2).

When the imputed values all lie on the best fit 
regression line, the residuals for all of these values 
would be zero. Also, substituting regression 
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Fiona O’Callaghan

Fiona O'Callaghan has worked as Customer 
Support Manager with Statistical Solutions Ltd. since 
1996. She was extensively involved in the development of 
SOLAS. She has a masters degree in statistics from 
University College Cork, Ireland.

Multiple Imputation 
using SOLAS for 
Missing Data 

Figure 1. Illustration of mean imputation.
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predictions would artificially inflate the correlation 
between X1 and X2.

No matter what the imputation method is— 
even if missing values could be imputed in such a 
way that the distributions of variables and 
relationships among them were perfectly 
preserved—imputed values are still only estimates 
of the unknown true values. Any analysis which 
ignores the uncertainty of missing data prediction 
will lead to standard errors that are too small, 
p-values that are artificially low, and confidence 
intervals that systematically cover less than their 
nominal coverages.

Multiple Imputation
Multiple Imputation (MI) is a technique that 

replaces each missing datum with a set of m >1 
plausible values instead of just one (see Figure 3). 

The m versions of the complete data are 
analysed by standard complete-data methods, and 
the results are combined using simple rules to yield 
estimates, standard errors, and p-values that 
formally incorporate missing data uncertainty.

The variation among the m imputations 
reflects the uncertainty with which the missing 

values can be predicted from the observed ones 
with a set of m > 1 plausible values.

Once the MI’s have been created, the datasets 
may be analysed by any method that would be 
appropriate if the data were complete. Any analysis 
would have to be run m times, once for each 
imputed dataset, and the results across these 
datasets will vary as a reflection of missing data 
uncertainty. An overall set of results can be 
obtained by combining the m sets of results using 
the rules given by Rubin (1987).

SOLAS for Missing Data Analysis
SOLAS is the only commercially available 

software package that performs Multiple 
Imputation. SOLAS 2.0 provides two multiple 
imputation approaches; a Propensity Score-based 
approach, and a Model-based approach using 
multiple linear regression. In both, the multiple 
imputations are independent repetitions from a 
posterior predictive distribution for the missing 
data, i.e., their conditional distribution, given the 
observed data.

Before the imputations are actually generated 
in SOLAS, the missing data pattern is sorted as 
close as possible to a monotone missing data 
pattern, and each missing data entry is labeled as 
either monotone missing or non-monotone 
missing, according to where it fits in the sorted 
missing data pattern.

A monotone data pattern occurs when the 
variables can be ordered, from left to right, such 
that a variable to the left is at least as observed as 
all variables to the right. For example, if variable A 
is fully observed and variable B is sometimes 
missing, A and B form a monotone pattern. Or if A 
is only missing when B is also missing, A and B 
form a monotone pattern. If A is sometimes 
missing when B is observed, and B is sometimes 
missing when A is observed, then the pattern is not 
monotone.

A monotone pattern of missingness, or a close 
approximation to it, can be quite common. For 
example, in longitudinal studies, subjects often 
drop out as the study progresses so that all subjects 
have time 1 measurements, a subset of subjects 
have time 2 measurements, only a subset of those 
have time 3 measurements, and so on. Monotone 
patterns are useful because the resulting 
imputation is completely principled since only 
observed/real data are used in the models to 
generate the imputed values. See Rubin (1987), 
Chapter 5.

Propensity Score Approach
In the Propensity Score-based approach, cases 

are grouped according to their probability of being 
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Figure 2. Illustration of regression imputation.

Figure 3. Multiple imputation replaces each missing 
value
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missing (i.e., propensity score) and then observed 
values are drawn from within each group to impute 
the missing values. So in general terms, a missing 
value will be replaced with a value that was 
observed in another case that had a similar 
probability of being missing. Or another way of 
thinking about this is that missing values will be 
imputed with observed values sampled from cases 
with similar “histories.” When you have several 
covariates that you want to use for imputation, 
stratifying on history can be difficult, but using the 
propensity score in this way is a method of 
reducing a multivariate stratification into a 
univariate one. 

For each variable that contains missing values, 
a logistic regression is used to compute a 
propensity score for every case in the dataset. The 
dependent variable in the logistic regression will be 
an indicator variable that corresponds to the 
presence or absence of the variable that is being 

imputed. The independent variables, or covariates, 
will be a set of variables in the dataset that are 
predictive of missingness. From the resulting 
regression equation, a propensity score can be 
calculated for every case. The dataset is then 
divided into a user-specified number of subgroups 
based on propensity score (the default being 5) 
such that all of the cases within a given subgroup 
will have a similar probability of being missing. An 
approximate Bayesian bootstrap is then applied 
within each subgroup so that the values that are 
sampled to impute the missing values will come 
from another case in the dataset that had a similar 
propensity score.

The Base Setup dialog box allows the user to 
choose which variables are to be imputed, which 
variables are to be used as covariates, and also to 
set options such as the number of imputed 
datapages (m) that are to be created.

The Monotone and Non-monotone tabs allow 
the user control over the variables to be used as 
predictors in the regression models. 

By default, all of the covariates are forced into 
the regression models, but the user has the option 
to “unforce” (switch off the forced option) 
covariates if he/she wishes. A backward stepping 
logistic regression is performed, so covariates 
which are not forced may be removed from the 
model.

The donor pool page provides the user with 
more control over which cases will be included in 
the pool from which the imputed values will be 
drawn. These donor pools or subgroups are 
derived from the propensity scores that are 
calculated for each case, so that within a given sub-
group, all of the cases will have a similar 
probability of being missing.

In addition, if there is a variable in the dataset 
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Figure 4. Base Setup tab.

Figure 5. Monotone and Non-montone tab.

Figure 6. Donor pool tab.



ASA

that is highly correlated with the variable to be 
imputed, then the donor pool can be further 
refined by matching on this “refinement variable” 
within each subgroup.

Model-based Approach
In the model-based approach, the predictive 

information contained in a user-specified set of 
covariates is used to predict the missing values in the 
variables to be imputed. First, a linear regression is 
estimated from the observed data. Using this estimated 
model, a new linear regression model is randomly 
drawn from its Bayesian posterior distribution. This 
randomly drawn model is then used to generate the 
imputations, which include random deviations from 
the model’s predictions. Drawing the model from its 
posterior distribution ensures that the extra uncertainty 
about the unknown true model is reflected. The Base Setup dialog box is much the same 

as that for the Propensity Score-based approach. It 
allows the user to decide which variables to 
impute, and which variables to use as predictor 
variables, or covariates.

The Monotone and Non-monotone tabs allow 
control over the variables to be used as predictors 
in each of the regression models.

Again, the default is that all covariates are 
forced into the regression model. Variables can be 
removed from the regression model by just 
dragging the variable from the list of covariates, 
back to the Variables list on the left-hand side of 
the dialog box.

Once the multiple imputation has run, the 
imputed datasets appear with the imputed values 
appearing in blue. The default for the number of 
imputations is 5, but this can be set to between 2 
and 10 imputations. Each of these datasets can be 
saved for later analysis or exported to any of a 
variety of other statistical packages.

Multiple Imputation Combined Statistics
When the multiple imputation has run, the 

user will have multiple complete datasets instead 
of just one. The idea behind multiple imputation is 
that any analysis should be performed multiple 
times (once for each imputed dataset) and then the 
results of these analyses are combined to give one 
overall set of results (repeated-imputation 
inference) which formally incorporates the missing 
data uncertainty.

The combined estimate of any parameter of 
interest, θ, for a particular variable is simply the 
mean of the estimates from each of the m imputed 
datasets. For example, the combined estimate of 
the mean of a particular variable, or a regression 
coefficient in a model, is simply the mean of the 
estimates for that parameter across the m imputed 
datasets. To estimate the variance of the combined 
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Figure 8. Monotone tab.             

Figure 7. Base Setup tab.

Figure 9. Multiply Imputed datasets.
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parameter estimate, you must combine the 
variance that is estimated from the combined 
parameter estimates from within each imputed 
dataset, with the variability of the estimate across 
the m imputed datasets, in other words, the within 
imputation variance and the between imputation 
variance.

In SOLAS 2.0, any analysis performed on a set 
of  mult iply imputed datasheets  wi l l  be 
automatically combined and presented in a 
Combined Output Window. For example if you 
run a two group t-test, you will get m sets of t-test 
results, plus an overall combined set which is the 
result of pooling across the m pages.

Script Language Facility
When you run a multiple imputation in 

SOLAS 2.0, the selections made are recorded and 
the corresponding commands are written into an 
imputation window that can be viewed and 
modified. This ability to save and access 
imputation set-ups can help to simplify the 
documentation when submitting to a regulatory 
agency. It also facilitates running simulations, as 

you can save your imputation set-up and run the 
same multiple imputation on different datasets.

A tutorial of SOLAS is available for download 
from http://www.statsolusa.com, and a demo version 
is also available on request.

References
1. Rubin, D. (1987), Multiple Imputation for 

Nonresponse in Surveys, Wiley, New York.
2. Rubin, D. and Schenker, N. (1991), “Multiple 

imputation in health-care data bases: an 
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It is no secret that graduate school can be a 
grueling and difficult experience. Most who have 
been through it already look back with a mixture 
of emotions: fond recollections of time spent with 
fellow grad students, wistful memories of what it 
was like to actually have time to read a journal 
article, perhaps a shudder at the all too common 
experience of feeling inadequate for the task of 
finding a good topic and completing a respectable 
thesis. For some students, making the transition to 
graduate school can border on traumatic. This can 
especially be the case for students who have been 
out in the workforce for several years and away 
from their study habits. The transition can also be 
difficult for students coming straight from a small 
undergraduate college to a large graduate 
institution. Coping with the relatively impersonal 
environment of a large graduate institution can be 
difficult when such students are used to a more 
supportive and nurturing setting. All these 
difficulties with the transition to graduate school 
can easily lead to a sense of failure. Adjusting to 
graduate school can also be especially difficult for 

 8    STATS #30  ■  WINTER 2001

Some Advice 
for Advisors

David Cowart Dionne Price

Carol Redmond Louise Ryan

June Stone-
Chestnut

Belinda Young

DuBois Bowman Angelita Bush

DuBois Bowman graduated with a Ph.D. in 
Biostatistics from University of North Carolina, Chapel 
Hill, in 2000, and is now an Assistant Professor in the 
Department of Biostatistics at Emory University. Angelita 
Bush graduated with a Masters degree in Biostatistics 
from University of North Carolina, Chapel Hill, in 2000 
and now works at Georgetown University, DC. June 
Stone-Chestnut graduated with a Masters degree in 
Statistics from Temple University in 1993 and now works 
at Wyeth-Ayerst Research Laboratories. David Cowart 
graduated with a Ph.D. in Biostatistics from Emory 
Un iver s i t y  i n  2000 ,  and  now works  a t 
PricewaterhouseCoopers in Boston. Dionne Price is a 
graduate student in the Department of Biostatistics at 
Emory University. Carol Redmond is a Professor of 
Biostatistics at University of Pittsburgh. Louise Ryan is a 
Professor of Biostatistics at Harvard School of Public 
Health. Belinda Young graduated with her M.S. in 
Biostatistics from Emory University in 1998 and now 
works at the University of California at San Francisco in 
the Department of Medicine, Divisions of Cardiology and 
Nephrology.



ASA STATS #30  ■  WINTER 2001     9

students who are underrepresented minorities, 
especially those coming from small undergraduate 
schools which have a predominantly minority 
enrollment, for example, HBCUs (Historically 
Black Colleges and Universities). Along with the 
difficulties in making the transition from a more 
pe r sona l  and  suppor t i ve  env i ronment , 
underrepresented minority students face additional 
issues such as isolation. This is especially true in 
fields like statistics and biostatistics where there are 
few minority role models, and where it is easy for  
students to find themselves in a situation of being 
the only minority student in the classroom.

These issues were discussed in depth at a 
round table luncheon sponsored by the Eastern 
North American Region (ENAR) of  the 
International Biometric Society at the 1999 Spring 
meetings in Atlanta. There were eight of us 
attending the lunch, including two faculty 
m e m b e r s ,  o n e  p ro f e s s i o n a l  f ro m  t h e 
pharmaceutical industry and six students. Five of 
us were members of an underrepresented group. 
Our discussion quickly turned to the role of the 
graduate advisor. A good advisor can make all the 
difference in helping a student to adjust and make 
a successful transition to graduate school. 
Unfortunately, however, it seems that all too often, 
graduate school academic advisors seem to see 
their role as simply signing off on their students’ 
course plan. Our assumption is that most advisors 
would be more than willing to help, if only they 
were aware of the issues facing their advisees and 
of the important role that they could play. At our 
luncheon discussion, we were easily able to 
generate the following list of things that schools 
and advisors can do to help new students:
1. There is no reason why graduate school 

academic advisors cannot be assigned in the 
spring at the time a student is admitted. It 
would be helpful if prospective advisors could 
contact their advisee by phone and/or email to 
begin a dialogue well before the student starts 
classes in the fal l .  Alternatively,  the 
department or the advisor could send a letter 
informing the student of the name, e-mail 
address, and phone number of his/her 
academic advisor. This letter could encourage 
the student to call or e-mail their advisor to 
begin a dialogue prior to the start of classes in 
the fall. The letter could also include tips (i.e., 
contacting other students in the department 
for advice over the summer, obtaining course 
syllabi for perusal, reviewing texts used in first 
semester classes) to ensure a successful 
beginning to their graduate career.

2. The first thing a prospective advisor should do 
is go over the student’s undergraduate record 
to identify any potential gaps. Has the student 
had enough linear algebra and calculus? For 
more theoretical programs, does the student 
need to learn some additional analysis? Does 
the student have good computing skills? Are 
there any poor grades, perhaps indicating the 
need for some brushing up of skills? The next 
step will be to discuss these issues with the 
student. It is also a good idea for the advisor to 
ask for more detail about specific courses. 
Calculus I I I ,  for  example,  can vary 
considerably from school to school! The 
advisor should ask the student in depth about 
important prerequisite courses. For example, 
asking what the topics were and what book 
was used for each course. If this evaluation 
reveals any gaps, the advisor might work with 
the student to identify a suitable program of 
reading or study over the summer. For 
example, perhaps the student might benefit by 
reviewing a linear algebra text. A more 
mathematically prepared student might benefit 
from reading an applied statistics book that 
introduces them to statistical applications. In 
some cases, a student might decide to enroll 
for summer school.

3. When it comes to picking courses for the fall 
semester, advisors should take the time to 
make sure that their advisee is prepared for 
the standard set of classes. In some cases, a 
student may be much better off with a slower 
start that allows them to fill in gaps in their 
background. It is much better to identify gaps 
and explore alternative course sequences at 
the beginning of the semester, rather than 
waiting until half-way through a course when 
a student may already be in serious trouble.

 We encourage the advisor and the student to 
be conservative when selecting courses for the 
fall semester. Conservative course selection 
can be especially important for minorities or 
other students whose transition into graduate 
school may involve more difficulties than the 
normal challenges faced by all students. The 
initial semester of graduate school often sets 
the stage for the entire experience of course 
work and possibly dissertation work. 
Although there may not be a great deal of 
flexibility in the selection of fall courses, the 
course schedule should be constructed on an 
individual basis and should maximize the 
chance of excellent performance. For the 
student with apparent gaps or deficiencies in 
undergraduate mathematics and statistics 
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courses, perhaps a program of course work 
should be developed that allows the student to 
complete a normal two-year sequence in two 
and a half or three years. The student with 
average preparation may reduce a typical load 
of four courses to three courses for the first 
semester. Finally, the student with superior 
background may take the usual set of courses 
or even an accelerated set of courses, if 
appropriate.

 The costs associated with poor performance 
from taking a course load that is too ambitious 
during the fall semester may include severely 
reduced confidence, feelings of inadequacy, 
feelings of intimidation toward professors and 
possibly c lassmates,  and insuff ic ient 
understanding of basic material that will affect 
future performance. These are only a few of 
the potential effects of a poor start in graduate 
school that often lead to an overall unpleasant 
experience. In addition, these effects 
immediately become obstacles to continuing 
on to advanced graduate work or perhaps 
other career plans. Our recommendation of 
conservatively selecting fall courses is thus 
based on the belief that the ramifications are 
far less severe than the consequences of poor 
performance during the first semester of 
graduate training.

4. All of us at the round table lunch felt strongly 
that the role of the academic advisor should 
not stop at signing the course schedule each 
semester. Ideally, the academic advisor should 
be a mentor— someone the student can grow 
to trust and rely on for advice and 
encouragement. Having a caring and reliable 
mentor can be particularly important for a 
minority student who might be feeling isolated 
in the department or whose confidence might 
be affected by the kinds of subtle racism that 
can often exist at large majority institutions. 
Advisors should be encouraged to see their 
advisee regularly throughout the semester, 
especially in a student’s first year. Although it 
can be difficult sometimes to draw a student 
out, advisors should try to communicate to the 
student that they really want to know how the 
student is doing. Often, unless an advisor 
pushes a little, many students will simply 
answer “fine” when asked how things are 
going. A student needs to be reassured that the 
advisor is there to help and will not judge the 
student in a negative way if the student 
expresses that they are struggling. Sometimes, 
it might help to talk away from the office 
setting. For example, talking over lunch can 

be a good way to break the ice and encourage 
the student to talk more freely about how they 
are doing.

 Academic advisors can also play an important 
role in terms of providing resources for their 
advisees. For example, an advisor might make 
sure that the student knows where to go to 
find out about health insurance, housing, 
childcare, etc. Minority students may be 
interested to know about on-campus minority 
student associations. While the advisor may 
not necessarily have all this knowledge 
themselves, they should be prepared to refer 
the student to people who do.

5. The academic advisor should encourage the 
student to actively seek out study groups and 
assistance from instructors in addition to 
doing independent work. Independent work is 
obviously critical to student development and 
is one of the primary goals of graduate 
training. However, regular communication 
with professors can not only contribute to a 
student’s understanding of course material, but 
it can also begin to eradicate some of the 
perceived barriers between students and 
faculty. Fellow students can be one of the most 
valuable resources available to a graduate 
student. During the initial phases of graduate 
training, when relationships between students 
have not been well developed, students should 
be encouraged to take an active role in 
establishing or participating in study groups. A 
sensitive advisor can play an important role in 
helping a student to seek out and establish 
effective collaborations. For example, an 
advisor can help a student identify a group 
involving the right level of challenge, as well 
as peer support. Sometimes a student may 
need to try out several different study groups 
before finding the right one. As relationships 
between students progress over time, such 
student collaborations will arise more 
naturally. 

The issues we have raised in this article 
represent just a few of the ways that a school can 
help ease a student’s path through graduate school. 
Often, a little extra effort can go a long way in 
improving a student’s life. The academic advisor 
can play a key role, but there is potential for 
developing a mentoring relationship that can be 
rewarding to both student and advisor.

Further useful tips for advisors can be found in “Advisor, Teacher, Role 

Model, Friend,” published by the National Academy Press, Washington, DC.
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Graduate school is a grueling experience with 
rigorous courses, qualifying exams, thesis writing, 
and stress. Additional factors such as coming from 
an underrepresented group make the entry and 
adjustment to graduate school even more difficult. 
A faculty advisor or mentor in a seemingly 
impersonal environment can make all the 
difference in the world to someone who’s feeling 
isolated. Although it may appear that professors are 
insensitive, the fact is that most want to see 
students succeed. For this reason, I provide brief 
commentary on some issues raised by Bowman et 
al. Few of us have forgotten what graduate school 
was like (sleepless, as I recall). We spend a lot of 
time discussing graduate student issues, both 
academic and personal, and it is very important 
that students know this. 

Bowman et al. make very good suggestions 
about how academic advisors can help students 
have a more positive experience in graduate 
school, especially in the first year:
• Communicate with new students prior to 

matriculation.

• Advise students on potential gaps or 
weaknesses in their backgrounds.

• Advise thoughtfully on course selection and 
course load.

• Provide regularly scheduled mentoring beyond 
courses.

• Encourage student to participate in formal and 

informal departmental activities, especially 
study groups.

Their points are very important and demand 
serious attention by department faculty. Although we 
may not be doing as well as we, or our students 
would like, we are in fact quite aware of these issues. 
Points 1-3 are components of the graduate 
admissions process at the departmental level. Of 
particular interest is the student’s background and 
suitability for a given program. During the admissions 
process, much time is spent discussing the probable 
success of applicants. In most departments, students 
with special circumstances are strongly advised and 
often required to follow an academic plan tailored to 
increase their chances of success. An advisor per se is 
not yet assigned but faculty members involved with 
recruiting communicate regularly with applicants. 
This is the first step in establishing a working 
relationship with a student, whereby weaknesses, 
strengths, and potential programs are outlined for and 
with the student. Upon admission and arrival to a 
new environment most students will have at least one 
faculty member, who is familiar with their 
background. 

The potential benefits of points 4 and 5 depend 
on the defined duties of academic advisors, how 
advisors are assigned to graduate students, and the 
personalities of the individuals involved. Sometime 
during the first year, students will become 
comfortable with at least one classroom professor, 
who can and often does serve as an academic 
advisor and mentor. It is mainly through these 
bonds that students receive most direction. Many of 
these self-selected mentors are aware of the newly 
formed relationships, realize they are a vital part of 
the student’s academic life, and nurture them 
accordingly. In many instances this mentor will be 
the unofficial spokesperson for the student in faculty 
meetings, TA assignments, and so forth. I agree with 
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Points 4 and 5 and I suspect that the advisor-advisee 
relationship could be more beneficial by more 
thoughtful assignments. Having students meet with 
their advisors or mentors on a regular basis (2-3 
times a year) can be immensely helpful to both 
parties. It is important for the student to know, 
however, that this is a two-way street and they, too, 
have a responsibility to communicate. Indeed, if not 
asked to come in, as Bowman et al. note, many 
students will not seek out advice they wish they 
were getting. Although not specifically noted, 
feedback should be a component of point 4. It is 
absolutely critical that students receive honest 
feedback, be it from their mentors, graduate 
advisors, or department chairs. Systematic yearly 
reviews (preferably written) monitor progress, while 
frank opinions and recommendations can prevent 
difficulties or hardships down the road.

Let me comment about minority affairs as they 
relate to the topic at hand. As a Mexican-American, 
I’ve had my share of “minority experiences” as a 
graduate student. As a faculty member, I’ve also 
had the benefit of observing minorities apply to, 
gain admission to, and progress through graduate 
school. For various reasons there are added 
difficulties for many of us from minority 

backgrounds. It is unlikely that you will get good 
advice on such minority matters from your advisor 
or mentor. In large part because they won’t be 
minority, but also because most have not been 
trained to detect problems related to minority 
issues or it simply is not in their comfort zone. I 
wouldn’t be too disappointed or angry if they don’t 
broach the subject with you; at best expect an 
empathetic ear. It is a difficult issue that needs 
attention. Articles such as that by Bowman et al. 
alert departments about concerns, but I do not see 
much changing in the near future until the 
composition of the faculty changes. 

There are those (students and faculty) that do 
not wish to claim their minority identity or attribute 
anything to it. Perhaps this is one reason why 
people don’t bring it up. Why should an advisor or 
mentor presume that I want to discuss the 
difficulties of being Mexican-American in graduate 
school just because my last name is Guerra? There’s 
a lot of gray area here, no doubt. You will have to 
navigate this one very carefully. Most universities 
have various minority organizations and there will 
be faculty across campus that have a reputation of 
being sensitive to the issues. That may be a good 
place to start if you’re not sure how to proceed with 
a minority related concern. 

Just like graduate students, faculty and 
departments vary in their personalities; many serve 
students well. Bowman et al. have some very good 
advice for advisors and I hope that after reading 
my article students know that for the most part we 
are aware of the issues. However, actions speak 
louder than words and I appreciate the reminder 
that many of my own concerns as a graduate 
student belong to every new generation of 
students. The next time a student walks into your 
office ask them how they’re really doing. Or, the 
next time you walk into your advisor’s office, ask 
him or her if they’re up for a coffee break.
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1. Background

An adequate memory is vital to the life-long 
process of learning. Cognitive psychologists have 
researched information processing greatly over the 
past 20 years. As a result, our understanding of this 
complex topic has dramatically increased. 
Regarding memory, people are most interested in 
how their memory may be improved.

Three distinct stages of memory have been 
identified: sensory storage, short-term memory, 
and long-term memory. Sperling (1960) conducted 
classic studies in the area of sensory storage that 
demonstrate that humans have an extremely 
accurate and complete memory for visual 
stimulation—but it is very brief. In order to 
increase the chances of transferring a stimulus to 
memory, the image must be salient. The more 
salient an image is, the greater chance it has of 
transferring into the short-term memory, and 
eventually the long-term memory. Peterson and 
Peterson (1959) studied short-term memory and 
demonstrated the impact of interference. When 
subjects were presented a stimulus, required to do 
something else (an interference task), then asked to 
recall the stimulus (retrieve it from short-term 
memory) their performance was far less accurate 
than for subjects not given the interference task. 
This leads to the serial position effect where in a 
list of stimuli (such as a set of numbers) the first 
and final items are more likely to be recalled than 
the middle. 

Many factors may influence the saliency of a 
stimulus, and thus the chances of forming a 
memory. This study was concerned specifically 

with the color of the stimulus and the gender of 
the subject. Linear models were used to analyze the 
data (Ward & Jennings, 1979).

2. Project
The objective of this experiment was to 

determine the effects of color (blue, green, red) and 
gender (male, female) on short-term memory.  Of 
the 30 high school students participating in the 
experiment, 15 were male and 15 were female. The 
first set of stimuli included a short string of seven 
random two-digit numbers (DATA7). The second 
set of stimuli included a long string of 14 random 
two-digit numbers (DATA14). Black was the 
control color, and blue, green, and red were the 
test colors. For both stimuli conditions the test 
numbers were presented initially in black, and 
then the subject immediately was given a test 
where the numbers were presented in blue, green, 
or red. The experiment was administered and the 
data were analyzed using Visual Basic, Excel and 
SYSTAT 6.0. 

Of the 15 subjects for each gender, five 
subjects were presented blue-colored numbers, five 
were shown red-colored numbers, and five were 
given green-colored numbers. This assignment was 
random until each color cell was full. All of the 
subjects performed the control task with black 
color. Each subject first selected his/her gender and 
grade level on the computer. Then they clicked 
“Continue” to begin the experiment. This 
presented them with seven random two-digit 
numbers for ten seconds. After ten seconds, the 
screen automatically changed to the next one. The 
subjects then recalled as many of the numbers as 
they could remember. They were instructed to fill 
in all of the blanks, even if they were required to 

Dominique 
Shelton

The Effects of Color 
and Gender on  
Short-term Memory

Dominique Shelton, Health Careers High School, 
San Antonio, Texas. (Dom_Shelton@hotmail.com) This 
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Association Project competition, 1st place at the San 
Antonio Alamo Regional Science Fair (in the Behavioral 
category), 2nd place at the Texas State Science Fair (in 
the Behavioral category), and 2nd place at the Texas 
Junior Academy of Science.
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guess. When the subject filled in the last box, they 
were automatically sent to the next screen where 
they indicated how confident they were with their 
answers on a scroll bar (one end indicating “Not 
Confident” and the other “Confident”). When the 
subject was done, they clicked “Continue” to 
repeat the procedure with the next set of numbers. 
Every subject took a control and colored test for 
DATA 7 and DATA14. 

The response variable is the measure of 
accuracy of memory (the score). The score of the 
colored numbers less the score of the black 
(control) numbers produces a difference score. The 
primary interest is determining if color makes a 
difference in the score, determining if gender 
makes a difference in score, and determining if 
there is interaction between color and gender. By 
interaction, I mean that the differences between the 
expected score for males and females are not the 
same for all three colors.

3. Methodology
I used a general linear model approach to 

investigate the research question of interest. This 
involves first developing an ASSUMED model that 
allows for the investigation of the hypothesis of 
interest. The natural language hypothesis implies 
certain restrictions on the parameters of the 
assumed model resulting in a RESTRICTED model. 

The first step in creating the statistical models 
is to define the following vectors:
SCORE = the number of correct responses using 

the test stimuli (colored numbers) minus the 
number of correct responses using the control 
stimuli (black numbers). This yields a positive 
value if the color improved memory or a 
negative value if the color hindered memory.

U = 1 for all 30 elements

FEMALE = 1 if the corresponding element of 
SCORE is from a Female; 0 otherwise

MALE = 1 if the corresponding element of SCORE 
is from a Male; 0 otherwise

GREEN = 1 if the corresponding element of 
SCORE is from a Green stimulus; 0 otherwise 

BLUE = 1 if the corresponding element of SCORE 
is from a Blue stimulus; 0 otherwise

RED = 1 if the corresponding element of SCORE is 
from a Red stimulus; 0 otherwise

MG = MALE*GREEN

MB = MALE*BLUE

MR = MALE*RED

FG = FEMALE*GREEN
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FB = FEMALE*BLUE

FR = FEMALE*RED

With the collected data, the following five models 
were created: 
1. SCORE = b1*U + bf*FEMALE + br*RED + 

bb*BLUE + E1

2. SCORE = b2*U + E2

3. SCORE = bmg*MG + bmb*MB + bmr*MR + bfg*FG 
+ bfb*FB + bfr*FR + E3

4. SCORE = bm*MALE + bf*FEMALE + E4

5. SCORE = bb*BLUE + bg*GREEN + br*RED + E5

where the bj represent the unknown model 
coefficients, and the Ej represent the random error 
terms.

Model 1 is the No-interaction model. This 
model is used to test the hypothesis that the 
differences between the expected values (MEANS) 
for MALES and FEMALES are the SAME for ALL 
THREE COLORS.  

Model 2 is the Unit vector model of all 1s. The 
least-squares coefficient of U is the GRAND MEAN 
of the elements of the dependent vector, SCORE.

Model 3 contains predictor vectors for all SIX 
mutually exclusive categories. The SIX least-
squares coefficients of this model are the 
AVERAGES (MEANS) of the SCORES for the five 
subjects in each of the SIX categories.

Model 4 contains TWO predictor vectors for 
the GENDER attribute. The TWO least-squares 
coefficients of this model are the AVERAGES 
(MEANS) of the SCORES for the 15 Males and 
fifteen Females.

Model 5 contains THREE predictor vectors for 
the COLOR attribute. The THREE least-squares 
coefficients of this model are the AVERAGES 
(MEANS) of the SCORES for the ten subjects in 
each of the BLUE, GREEN and RED categories.

These models are compared through the use of 
the F statistic:

F =

(sum of squares of error of restricted - sum of squares of error of assumed)

(#  of predictors in assumed -  #of predictors in restricted)

(sum of squares of error of assumed)

(#  of cases -  #  of predictors of assumed)

While graphs give us a graphical representation of 
the means, the F statistic can be used to make 
statistical decisions about the significance of the 
hypotheses.

With the models, the following hypotheses 
were investigated for each set of test conditions 
(i.e., DATA 7 and DATA14):
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Hypothesis 1: No interaction (There are 
constant differences between MALE-FEMALE 
MEANS across the three colors.) 
• Assumed Model = six-vector Model (3)

• Restricted Model = four-vector, No-interaction 
Model (1)

Hypothesis 2: Assuming No interaction, there are no 
differences between the MALE-FEMALE 
means across the three colors.

• Assumed Model = No interaction Model (1)

• Restricted Model = Color Model (5)

Hypothesis 3: Assuming No interaction, there are no 
differences between the BLUE, GREEN and 
RED means for both the MALE and FEMALE 
categories.

• Assumed Model = No interaction Model (1)

• Restricted Model = Gender Model (4)

4. Results
Overall, a blue color for the digits improved 

scores while a green or red color generally lowered 
scores. The average score for the DATA7 tests, for 
males, was 2.2 for blue digits, 0.0 for green digits, 
–0.2 for red digits; for females the average score 
was 0.8 for blue digits, –1.6 for green digits, –1.6 
for red digits. The average score for the DATA14 
tests, for males was 2.8 for blue digits, -0.6 for 
green digits, –0.8 for red digits; for females the 
average score was 2.8 for blue digits, –2.2 for green 
digits, 1.2 for red digits (see Figure 1).
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DATA7

The hypothesis of no interaction between 
gender and color failed to be rejected for DATA7 
tests (i.e., F = 0.02, p=0.9814). You can see from 
Figure 2 that no interaction is present. Because the 
hypothesis of no interaction failed to be rejected, 
the no-interaction model (1) was used as the 
Assumed Model for the DATA7 tests. The test of no 
gender differences was rejected (F= 9.79, p= 
.0043) and the test of no color differences was 
rejected (F= 11.18, p=.0003).

DATA14
The hypothesis of no interaction was rejected 

for the DATA14 test (i.e, F= 3.97, p=.0325). We 
can observe this conclusion from the six means 
shown in Figure 2 and the results given in Table 1.

Blue improved scores for both genders. I 
noticed that it was improved most notably in the 
beginning of the string of numbers (between 
positions two and four of the sequence). In the 
control (the black string of numbers), 10% of the 
subjects gave a correct response for position four. 
In the blue stimulus, 70% gave a correct response. 
Red was inconsistent, decreasing the score for 
males but increasing or decreasing the score of 
females. Green, on the other hand, decreased 
scores across all categories. 

Discussion
The DATA14 tests may be a more reliable 

measure of short-term memory because the longer 
string of numbers allows for more variability 

Figure 1. Mean Scores
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(variance for data7 = 3.30, versus 5.36 for data14). 
Many subjects were able to remember most of the 
numbers in the string of 7, but not in the string of 
14. By presenting more numbers than the subject 
is capable of remembering, we allow for 
improvement.

It is interesting to note that of the three colors, 
blue has the lowest level of relative energy (450 to 
500 nm) and green has the highest relative energy. 
It would be interesting to investigate whether there 
is a relationship between the wavelength of the 
color and short-term memory. It is known that in 
fast food restaurants and other places, bright colors 
such as red and bright green are used to get people 
in a “hurry up and spend money” mood. On the 
other hand, soft colors or pleasant shades of blue 
are not used because these colors tend to have a 
calming effect. This could be applied to the 
concept of short-term memory or the process of 
learning in general.

5. Conclusion
The data demonstrate a significant relationship 

between color, gender, and short-term memory 
and shows the potential for future research. In 
general, females are affected more by color than 
males. Overall, blue color appears to improve 
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short-term memory while the colors red and green 
generally hinder it. Longer strings of numbers 
allow for more variability and so are more reliable 
measures of the effects of certain factors on short-
term memory. 

6. Future
In the future, more subjects will have to be 

tested over a wider range of colors to verify the 
validity of the results. With the results, there are 
many possible applications for studies involving 
short-term memory in the field of psychology. For 
example, there is great interest in learning how to 
study more effectively and remember more reliably. 
If there were a simple method to improve memory, 
such as writing with a certain color pen, then it 
would be easy for many people to benefit from it. 
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Figure 2. Means for DATA7 and DATA14

Table 1. F Statistics of DATA7 and DATA14

Model  F value  Prob. F  Conclusion  

DATA7  No-Interaction 0.02 0.9814  FAIL TO REJECT
DATA7  Gender Equal 9.79 0.0043  REJECT AT .05  
DATA7  Color Equal 11.18 0.0003 REJECT AT .05  
DATA14 No-Interaction 3.97 0.0325 REJECT AT .05  

DATA7 DATA14
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Sampling Distributions

The sampling distribution of a statistic is one 
of the most difficult concepts encountered by 
students in an introductory statistics course. It is 
also one of the most fundamental. Without an 
understanding of sampling distributions, statistical 
inference becomes a mysterious mix of formulas 
and steps learned by rote. Sampling distributions 
are hard to understand because there is so much 
going on. Students must grapple with not just one 
idea, but several. 

This article presents a series of activities, some 
in class and some out of class, that allow students 
to experience and explore the sampling 
distribution of the sample mean. The in class 
activity is presented using a hypothetical class of 
25 students. However it can easily be adapted to 
both larger and smaller class sizes. The out of class 
activity involves the use of the internet and a Java 
applet developed by David Lane as part of the Rice 
Virtual Lab in Statistics at Rice University (www.ruf.
rice.edu/~lane/rvls.html).

In Class Activity
The understanding of sampling distributions 

begins with a clear distinction between a 
population and a sample. The population consists 
of all items of interest, where a sample is simply a 
few of those items selected from the population. 
One problem with in class activities is having 
materials conveniently available. For this activity 
the students provide the materials by way of their 
telephone numbers. Specifically, the last four digits 
of  their  telephone numbers.  Below is a 
hypothetical class of 25 students and the last four 
digits of their telephone numbers.

The collection of 100 phone digits will be our 
population of interest. If you have a large class 
(100 or more, as I do) each student contributes 
only the last digit of her/his phone number to the 
population. For a smaller class you can go to a 
phone book and get additional numbers to create a 
larger population. The first thing to consider is 
how these digits are distributed. Have students 
come to the board and tally their digits, create a 
histogram and comment on the histogram’s center, 
spread and shape.

The distribution of the individual digits is 

centered around 4.5 with values ranging from 0 to 
9. The shape is somewhat bimodal with relatively 
more 2’s and 8’s and relatively few 0’s, 5’s and 9’s. 
This shape is not necessarily typical of the 
distribution of telephone digits. An important 
point to make is that this distribution does not 
change. Any time you look at the entire population 
you will get the same distribution of values.

W. Robert 
Stephenson

Amanda   2078   Doug   1849   
Kathryn   5293   Nathan   4198   
Sarah B.   1213 Amy   1176   
Jamie   0885   Kelly   8652   
Nathaniel   2647   Sarah S.   1325 
Angela   7877   Jeffrey   7314   
Kimberly   9281   Patrick   2456   
Shelley   4839  Audra   0679   
Jennifer   5748   Mark   2338   
Peter   3678   Theresa   4227 
Brianne   3083   Jessie   1492   
Miki   3806   Robert   2741   
Virginia   3066
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What happens when we sample from our 
population of 100 digits? Consider samples of size 
2. It is convenient to have each student take the 
first 2 digits of her/his 4 digit number as a sample 
of size 2. She/he can also use the last two digits as a 
sample of size 2. By finding the average value for 
each of these samples, one can have 50 realizations 
of the average of samples of size 2. These are only 
50 of the thousands of possible samples of size 2. 
Once each student has her/his averages of size 2, 
the results can be tallied and a histogram of these 
averages can be constructed and described. Above 
is the histogram for our class of 25.

The center of this simulated sampling 
distribution is around 4.5 (similar to that of the 
original population distribution) but its spread is 
somewhat less, sample means range from 1 to 9. 
The shape is tending to mound more towards the 
center. The percentage of values away from the 
center is reduced.

Now consider samples of size 4. It is 
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convenient to have each student take his/her 4 
numbers as a sample of size 4. By finding the 
average value for each of these samples, one can 
have 25 realizations of the average of samples of 
size 4. Again, the students can go to the board, 
tally their averages and construct a histogram of 
those averages. At the bottom of the first column is 
the histogram for our class of 25.

The center of this simulated sampling 
distribution is around 4.5 (similar to that of the 
original population distribution) but its spread is 
much less, sample means range from 2 to 7. The 
shape is much more clustered (a single mound) 
near the center.

Discussion
With a class of 100, this activity takes about 

30 minutes to complete. Rather than have students 
come to the board, I have a show of hands for the 
number of values in each interval class.

This activity helps to highlight the relationship 
between the center and spread of the population of 
values and the center and spread of the sampling 
distribution of the sample average. It also begins to 
hint at the Central Limit Theorem. The bimodal 
shape seen in the population distribution is not 
apparent in the sampling distribution of the sample 
average values as the sample size increases.

Many students are confused about the number 
of samples versus the sample size. We have taken 
50 samples of size 2 and 25 samples of size 4 to 
construct the latter two histograms. It is the size of 
the sample that is important, not the number of 
samples. By using a percent scale for the vertical 
axis on the histograms, the number of samples is 
de-emphasized.

For larger classes, I have students form groups 
of 2 and 4. Each member of the group contributes 
the last digit of his/her telephone number. Most 
students will form groups by proximity (who is 
closest to them).

Either with the four digits from each student 
or groups formed by proximity, it appears that we 
have violated an important rule for the 
construction of sampling distributions. We have 
used convenience samples instead of random 
samples. Does this make a difference? Have the 
students come up with a method for randomly 
sampling from the population. This can be done by 
having each student write their digits on individual 
slips of paper. The slips can then be put into a bag, 
mixed and sampled from. Create multiple random 
samples of size 2 and multiple random samples of 
size 4 and construct histograms of the averages. 
The results you get will be different from the 
histograms below but should show the same 
narrowing of spread and clustering (mounding) in 
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the middle.
What the students will find is that in this case 

the convenience samples work as well as random 
samples since the assignment of the last 4 digits of 
a phone number is essentially a random 
assignment. With most practical sampling 
situations, convenience samples are prone to bias 
and random samples should be used.

Exploring Sampling Distributions on the 
World Wide Web

Once students have done the in class activity it 
is time to turn them loose (with a little guidance) 
to explore sampling distributions using a program 
developed by David Lane at Rice University. This 
program allows students to quickly draw many, 
many samples and to easi ly change the 
characteristics of the population and the size of 
samples. Students will need access to the World 
Wide Web via a browser that supports frames and 
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Java.
Students should go to the URL: www.ruf.rice.edu/ 

~lane/stat_sim/sampling_dist/index.html
Instructions for the use of the sampling 

distribution Java applet appear on the right side of 
the page. Click on the Begin button on the left side 
of the page. This will bring up a Java applet 
Window with four sets of axes. The top set displays 
a mounded, symmetric distribution of the parent 
population. To the left are the population 
parameters, a mean of 16 and a standard deviation 
of 5. To the right is a pull down menu where you 
may select a few other shapes. Make sure that a 
normal distribution is selected for the first activity. 
The parent population should look like the 
histogram above.

1. Click on the Animated Sample button 
located at the right of the Sample Data axes. The 
results of a simple random sample of size 5 taken 
from the parent population will appear on the 
Sample Data graph. The mean of this sample of 
size 5 will appear in blue on the Distribution of 
Means graph. 
• In what ways does the sample look like the 

parent population? 

• What could you do to increase the likelihood 
that the sample would look more like the 
population? 

• Looking at the summary statistics to the left of 
the Sample Data graph, is the mean of the 
sample near the population mean? 

• If the Animated Sample button is clicked again 
will the new sample be the same as the current 
sample? Briefly explain your answer. 

• Click on the Animated Sample button to 
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confirm your answer. 

Let’s focus on the Distribution of Means graph. 
This graph should contain two blocks representing 
the means of the two random samples of size 5 that 
have been selected. The mean of these two sample 
means is given to the left of the graph. Press the 
Animated Sample button several times. Now use 
the 5 samples and 1000 samples buttons to build 
up the sampling distribution. Each time one of 
these buttons is pressed, more samples of size 5 are 
selected from the population. It is important to 
remember that the sample size (5) does not 
change. Each sample contains 5 observations from 
the parent population. We have to simulate enough 
samples before the Distribution of Means becomes 
apparent. Reset the applet by clicking on Clear 
lower 3. Use the 10,000 samples button to 
simulate the sampling distribution of the sample 
mean for samples of size 5. In Table 1, sketch the 
Distribution of Means and give the mean and 
standard deviation (sd). 
• Does the mean of the Distribution of Means 

differ from the center of the parent population 
by a lot?

• How does the spread of the Distribution of 
Means differ from the spread of the parent 
population?

• Does the shape of the Distribution of Means 
differ from the shape of the parent population 
distribution? Concentrate on the shape. Where 
does the distribution mound? Is the 
distribution symmetric?

2. Repeat activity 1 only this time use the N = 
5 pull down menu next to the Distribution of 
Means graph to change the sample size to N = 25. 
Record the description of the Distribution of Means 
in Table 2. What do you notice that is different 
when using random samples of size 25 instead of 5?
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Change the population shape to skewed. 
Report the mean and standard deviation (sd) and 
shape (it may help to sketch the distribution) of 
the parent population in Table 3. Select a sample 
size of 2 for the Distribution of Means on the third 
set of axes. Select the Mean and a sample size of 5 
for the Distribution of Means on the fourth set of 
axes. Take 10,000 samples. Report the means and 
standard deviations and describe and/or sketch the 
shapes for the Distributions of Means in Table 3. 
Now select a sample size of 10 for the Distribution 
of Means on the third set of axes. Select the Mean 
and a sample size of 25 for the Distribution of 
Means on the fourth set of axes. Take 10,000 
samples. Report the means and standard deviations 
and describe and/or sketch the shapes for the 
Distributions of Means in Table 3. 

Compare the Distribution of Means for each 
sample size to the parent population distribution. 
How does the mean compare? How does the 
standard deviation compare? How does the shape 
compare? Summarize your findings about the 
relationship between the distribution of the parent 
population, sample size and the sampling 
distribution of the sample mean in one or two 
sentences. How does your summary compare to 
the statement of the Central Limit Theorem?

Discussion
The purpose of the first activity is to have 

students understand the idea of random sampling 
from a parent population. The Animated Sample is 
quite good at visually displaying the selection of 5 
values from the parent population. These 5 values 
produce one realization of the sample mean. 
Another Animated Sample provides a different set 
of 5 values and a different realization of the sample 
mean. By building up the Distribution of the Mean 
slowly at first, students can see how different 
samples produce different sample means (the basis 
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of sampling variability). Being able to generate 
multiple samples (10,000 samples button) greatly 
speeds the process of building the Distribution of 
the Mean.

Students can sometimes confuse the number 
of samples with the sample size. It is important to 
differentiate these two ideas. The Java applet uses 
Reps to indicate the number of times samples are 
taken and N to indicate the size of each sample. By 
sketching the Distribution of Means once for each 
sample size, and comparing the distributions for 
several sample sizes, the confusion with the 
number of samples generated should be lessened.

The first two computer activities deal with a 
parent population that is symmetric and mounded 
in the middle (a.k.a. normal). The Central Limit 
Theorem does not enter in here because the 
Distribution of Means is normal, no matter what 
the size of the sample, when sampling from a 
normal parent population. The Central Limit 
Theorem only comes into play when we are 
sampling from a parent population that does not 
have a normal shape. The third activity does 
address the Central Limit Theorem and how large a 
sample one needs before the Distribution of Means 
is approximately normal shaped. The activity is 
nice in that the parent population is always 
displayed and its shape never changes throughout 
the activity. It is the shape of the Distribution of 
Means that changes with the sample size.

There are several other web sites that you can 
go to in order to explore sampling distributions. 
Some, but certainly not all, are: 
• statweb.calpoly.edu/chance/applets/applets.html

There are several applets at this site that deal 
with sampling distributions. 

—Sampling Senators This applet allows you to 
draw samples of U.S. Senators and look at 
characteristics such as: gender, party, and years in 
office. 

—Sampling Pennies The population of interest 
consists of pennies and the year they were minted. 
Samples are taken from the population and the 
distribution of the sample mean year is displayed.

—Reeses Pieces This applet has a clever 
animation that looks at the sampling distribution 
of a binomial proportion. 
• www.stat.sc.edu/~west/javahtml/CLT.html

This applet simulates the rolling of 1 to 5 dice 
to demonstrate the Central Limit Theorem. 
• www.gen.unm.edu/faculty_staff/delmas/ stat_

tools/sampling_distributions/samp_dist_tools.htm

This website contains tools for exploring 
sampling distributions. There is computer 
software, that you can down load, for construction 
of the sampling distribution of the sample mean. 
There are also pre-tests and post-tests and 
instructions for using the software. 
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The theme for this issue’s column is the name 
itself: outliers. One of the most interesting aspects 
of any statistical investigation is looking for 
outliers. Even more interesting is deciding what to 
do with them, which inevitably involves non-
statistical issues of determining whether they are 
recording errors or important anomalies. In this 
column I will introduce you to some of my favorite 
outliers. [Assignment 1: Before you even read 
further, think about some outliers that you have 
encountered and found to be interesting. Please 
send me a message telling me about your favorite.]

Outliers In Elections
By the time this issue of Stats appears in print, 

the United States will have inaugurated its 43rd 
President. As I write this, though, during the 
Thanksgiving holiday a full seventeen days after 
the election, neither I nor anyone else in the 
country knows for sure who that will be. 

An intriguing part of the vote tabulation 
controversy in Florida involved the question of 
whether large numbers of people in Palm Beach 
County who voted for Pat Buchanan had really 
intended to vote for Al Gore but were confused by 
the infamous “butterfly” ballot. Statistical analyses 
conducted on the vote results revealed that the 
number and percentage of Buchanan votes in that 
county were extreme outliers compared to results 
in the other 66 counties in Florida. Whether to 
attribute the cause for the outlier to voter 
confusion is a question of much debate. [See http://
madison.hss.cmu.edu for an analysis by Greg Adams 
of Carnegie Mellon and Chris Fastnow of Chatham 
College, along with links to many other analyses.]

I will pursue a much less controversial analysis 
of outliers related to this election. My home state of 
Pennsylvania was also a key “battleground” state, 
attracting as much attention as Florida prior to the 
election, but far less afterward. The boxplot in 
Figure 1 displays for the 67 counties in 
Pennsylvania (the same number as in Florida!) the 
percentage of a county’s votes that went to Al Gore, 
as reported by CNN’s website www.cnn.com/ 
ELECTION/2000/results/. [Assignment 2: Before 
reading further, make a guess for the proportion of 
Pennsylvania counties that Gore won. Assignment 
3: Try to identify the outlier county.]

The boxplot reveals the upper quartile of this 

distribution to be below 50%, but with so many 
minor-party candidates in the race, it was possible 
to win a plurality of votes in a county with less 
than 50% of the votes. Gore won 18 of 
Pennsylvania’s 67 counties, about 27%. The outlier 
county in which 80% of the votes went to Gore is 
Philadelphia County, including the city of 
Philadelphia. This county is not only an outlier in 
its overwhelming support for Gore but also in 
terms of number of votes cast. Far more votes were 
cast in Philadelphia County than in any other. The 
combination of these two factors, of course, 
explains Gore’s winning the state of Pennsylvania 
with 51% of the vote to Bush’s 47% despite Bush 
winning more than 70% of the counties, with an 
average margin of more than 23 percentage points 
over Gore in those counties.

If Bush had won 80% of the vote in a county, 
would that have been classified as an outlier like 

Allan Rossman

Outlier...s

Figure 1.
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Gore’s 80% in Philadelphia? The IQR of Bush’s vote 
percentages is 63-47 = 16, so according to the 
convention that outliers are those values falling 
more than 1.5 IQR’s from their nearer quartile, 
Bush would have had to win more than 87% of the 
votes in a county for it to qualify as an outlier. 
[Assignment 4: Perform a similar analysis of your 
state’s results to see if any counties are outliers.]

Outliers In Life And Death
The boxplots in Figures 2 and 3 reveal the 

distributions of birth rates (Fig. 2) and death rates 
(Fig. 3) for the fifty states. These are rates per 1000 
population, based on 1997 data, as reported by the 
National Center for Health Statistics and reprinted 
in The World Almanac. The states are grouped by 
whether the state is primarily east or west of the 
Mississippi River. [Assignment 5: Identify the two 
states through which the river runs. Assignment 
6: Before you read further, try to identify which 
two states are the outliers.]

Very reasonable explanations can be found for 
the two outliers in these distributions. The state 
with the high birth rate is Utah, which has a high 
density of people in religions that do not condone 
birth control. The state with the low death rate is 
Alaska, a state to which very few people retire to 
spend their twilight years.

This example also illustrates that outliers are 
determined by the company they keep. If we pool 
all fifty states together, then Arizona joins Utah as 
an outlier on the high end of the birth rates and 
Utah joins Alaska as an outlier on the low end of 
the death rates, according to the conventional 
1.5IQR rule.

Outliers In Sports
The biggest outlier in sports these days is 

unquestionably Tiger Woods. He won three of 
golf ’s four major championships in 2000. Most 
impressively, he won the U.S. Open at Pebble 
Beach and the British Open at St. Andrews in 
runaway, record-setting fashion. The boxplot in 
Figure 4 displays the total strokes in the U.S. Open 
for the 63 golfers who made the cut. Woods’ total 
of 272 was 12 strokes under par and a full 15 
strokes better than the runner-up’s score. How 
much of an outlier is this? The quartiles are 293 
and 299, so the IQR is 6, so Woods’ 272 lies a full 
3.5 IQR’s below the lower quartile. If you prefer to 
measure extremeness in z-scores, the mean of these 
scores is 296.08 and the standard deviation is 5.85, 
so Woods’ 272 corresponds to a z-score of –4.12. 
For comparison, the runner-up’s z-score is –1.55.

A round-by-round analysis reveals that Woods 
had the best score in the first round (65), tied for 
the best in the second round (69), and the best in 

the fourth round (67). His third round score of 71 
was actually bettered by three of the 63 golfers. 
None of these individual round scores classifies as 
an outlier, but of course the cumulative effect of 
the four rounds of excellence produces one of the 
most impressive outliers in the history of the game.

Of course, Woods is not the only outlier 
appearing in the boxplot. The last-place golfer 
among those who made the cut finished with a pair 
of 84 rounds for a total of 313, 29 strokes over par 
and 41 behind Woods. This golfer’s total is 2.33 
IQR’s above the upper quartile and corresponds to 
a z-score of 2.89. Both of these would usually be 
impressive, but they pale in comparison to the 
degree to which Woods is an outlier. [Assignment 
7: Identify the player with this high outlying 
score.]

Woods won the British Open with a score of 
269, 19 strokes under par on the venerable links of 
St. Andrews. The runner-up’s score was 281. The 
quartiles for the 73 golfers who made the cut were 
281 and 289, so Woods’ score of 269 is exactly 1.5 
IQR’s below the lower quartile. While this 
precludes Woods’ score from appearing as an 
outlier on the boxplot, I doubt if this diminishes 
his achievement in his eyes of the golf world. 
Woods’ total corresponds to a z-score of –3.34 and 
the runner-up’s to a z-score of –1.69. [Assignment 
8: Determine the mean and standard deviation of 
these scores.]

Another sports example reveals another one of 
my favorite outliers. Beth Chance submitted to the 
JSE Data Archive data on the weights of rowers on 
the 1996 U.S. men’s Olympic rowing team (www.
amstat.org/publications/jse/archive.htm). A boxplot of 
the weights of the members of the eight-man event 
appears in Figure 5. [Assignment 9: Before 
reading further, explain the outlier in this boxplot.]

This outlier can be explained not by a 
recording error or even by voter confusion. The 
outlier among these rowers is the coxswain, who 
does not row but rather calls out instructions to 
help the rowers to work in unison. In order not to 
add much weight to the boat, an ideal coxswain is 
therefore very light (and loud!). This example also 
serves as a reminder that outliers depend on their 
company. When one examines weights of the entire 
team, the six rowers who participate in 
“lightweight” events have small enough weights to 
pull down the value of the lower quartile to where 
the coxswain’s weight is less than one IQR below 
the lower quartile. [Assignment 10: Analyze the 
data on weights of the 2000 Olympic rowing team 
to see if a similar outlier emerges (see http://rowing.
a b o u t . c o m / r e c r e a t i o n / r o w i n g / l i b r a r y /
blolympics00usteam.htm).
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Outliers From Mathematical Models

One of my favorite assignments to give to 
students who are studying the normal distribution 
for the first time is to find the probability that an 
observation from a normal distribution will be 
classified an outlier by the 1.5IQR rule. 
[Assignment 11: Before you read further, go ahead 
and do this calculation.]

One can find that the quartiles of a normal 
distribution fall at µ ± 0.6745σ. Thus, the IQR is 
1.349σ. Outliers are therefore values that fall 
below µ – 2.698σ or above µ + 2.698σ. The 
probability of each of these is .0035, so the 
probability that a value from a normal distribution 
is classified as an outlier is .0070. How does this 
probability compare to other probability 
distributions? [Assignment 12: Before reading 
further, perform this calculation for the continuous 
uniform and exponential distributions.] 

The uniform distribution with endpoints α 
and β is quite easy to work with. The quartiles 
occur one-fourth and three-fourths of the way 
along the interval, so the IQR is one-half of the 
interval. Thus, subtracting 1.5IQR from the lower 
quartile falls below α, and adding 1.5IQR to the 
upper quartile exceeds β. The probability is 
therefore zero that an observation from a uniform 
distribution will be labeled an outlier.

For an exponential distribution with mean θ, 
the quartiles can be shown to occur at – θln(.75) 
and – θln(.25). The IQR is therefore θln(3), or 
about 1.099θ.  The right skewness of the 
exponential distribution ensures no outliers on the 
low end, but a high outlier can be found to be a 
value above roughly 3.0342θ, and the probability 
of a high outlier can be calculated to be about 
.048, a much higher probability than with the 
normal distribution.

As a check on this analysis, I simulated 10,000 
values from a normal distribution. I found that 71 
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of the 10,000 fell below –2.698 or above 2.698. I 
then simulated 10,000 values from an exponential 
and found that 481 of the 10,000 fell above 
3.0342θ. 

These calculations are unsatisfying in some 
respects, though. They pertain to the theoretical 
model and not to samples of data generated from 
the model. The IQR calculation on which the 
outlier test depends would be based on the sample 
data, not on the quartiles of the model. For 
instance, is the probability really zero of 
encountering an outlier in a sample from a uniform 
distribution? There is some positive probability, 
admittedly quite small, that enough sample values 
would fall near the center of the distribution to 
have a small enough IQR that some values near the 
endpoints could be labeled as outliers. Similarly, 
with a sample from a normal distribution, the IQR 
based on the sample data will naturally not equal 
the IQR of the model itself, so the calculation 
above will not be valid for a sample of data. A 
more substantial analysis, either by studying order 
statistics or through simulation, is well beyond the 
scope of this modest column that set out to 
examine Al Gore’s votes and Tiger Woods’ strokes. 
[Assignment 13: Please conduct more thorough 
analyses of these outlier problems, and write up 
your findings as a submission to Stats. Assignment 
1 reminder: Please send me your favorite examples 
of stories of outliers.]

[Answers to assignments not given in the 
column: 5. The Mississippi River runs through the 
states of Minnesota and Louisiana, but in both 
cases most of the state lies to the west of the river. 
7. Robert Damron was the outlier who finished in 
last place in the 2000 U.S. Open. 8. The mean of 
the scores was 285.18, and the standard deviation 
was 4.85.]

Please send your assignments, and suggestions 
for future columns, to Allan Rossman at rossman@
dickinson.edu.

Figure 5.
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