

Using Blueprints to Align Learning Objectives and Assessments

Whitney Zimmerman, Ph.D. STAT 200 Instructor & Coordinator Department of Statistics

Glenn Johnson Instructional Designer Department of Statistics

Triangle of Effective Teaching

Biggs, J. (1999) *Teaching for quality learning at university*. Buckingham, Philadelphia: Society for Research in Higher Education & Open University Press.

Lesson: Learning Objectives

STAT 200 | Elementary Statistics

Start Here!

- Welcome to STAT 200!
- Search Course Materials
- Faculty login (PSU Access Account)

Lessons

- Lesson 0: Statistics: The "Big Picture"
- Lesson 1: Gathering Data
- Lesson 2: Turning Data Into Information
- Lesson 3: Probability 1 Variable
- Lesson 4: Probability 2 Variables
- Lesson 5: Probability Distributions
- Lesson 6: Sampling Distributions
- Lesson 7: Confidence Intervals
- Lesson 8: Hypothesis Testing
- Lesson 9: Comparing Two Groups
- Lesson 10: One-Way Analysis of Variance (ANOVA)
- Lesson 11: Association Between Categorical

Home

Lesson 12: Inference About Regression

- Printer-friendly version

In Lesson 11 we examined relationships between categorical variables. In this lesson, we will examine the relationships between two quantitative variables. Recall from Lesson 2, quantitative variables have numerical values with magnitudes that can be placed in a meaningful order. The main topics in this lesson are correlation (Pearson's r) and simple linear regression; both involve two quantitative variables.

Lesson 12 Learning Objectives

Upon completion of this lesson, you should be able to do the following:

- identify situations in which correlation or regression analyses are appropriate.
- within a given scenario, identify the explantory and response variables.
- interpret scatterplots.
- compute and interpret Pearson r correlation coefficients.
- explain how outliers can influence correlation and regression analyses.
- compute and interpret the coefficient of determination (R²).
- interpret the results of a simple linear regression analysis.

Lesson: MyStatLab Homework

Lesson 12 Learning Objectives

Upon completion of this lesson, you should be able to do the following:

- identify situations in which correlation or regression analyses are appropriate.
- within a given scenario, identify the explantory and response variables.
- interpret scatterplots.
- compute and interpret Pearson r correlation coefficients.
- explain how outliers can influence correlation and regression analyses.
- compute and interpret the coefficient of determination (R²).
- interpret the results of a simple linear regression analysis.

My Se	electio	ons (12)	▶ View Assignment Details		Questions:	: 12
	#	Question ID / Media	Section / Book Association	Estimated time: 14m 22s+	: Points:	: 26
] 1	2.1.1	Identify variable types.	1m 24s	5)	2
	2	3.2.11	Find a correlation coefficient and/or interpret aspe	1m 56s	ゔ゚	1
.II C	3	3.2.16	Find a correlation coefficient and/or interpret aspe	59s		4
	4	3.2-10 (tb)	Find a correlation coefficient and/or interpret aspe			1
	5	3.2-12 (tb)	Find a correlation coefficient and/or interpret aspe			1
	6	3.4-2 (tb)	Identify potential or actual misuse of regression o		9	1
	7	12.1.1	Find and interpret a prediction equation.	3m 12s	5	4
	8	12.1.3	Use a prediction equation.	3m 26s	5	5
	9	12.1-12 (tb)	Find and interpret a prediction equation.		9	1
	10	12.1-14 (tb)	Use a prediction equation.		5	1
.1	11	12.2.18	Compare/interpret slopes and/or correlations of re	3m 25s	9	4
	12	3.2-4 (tb)	Find a correlation coefficient and/or interpret aspe		599	1

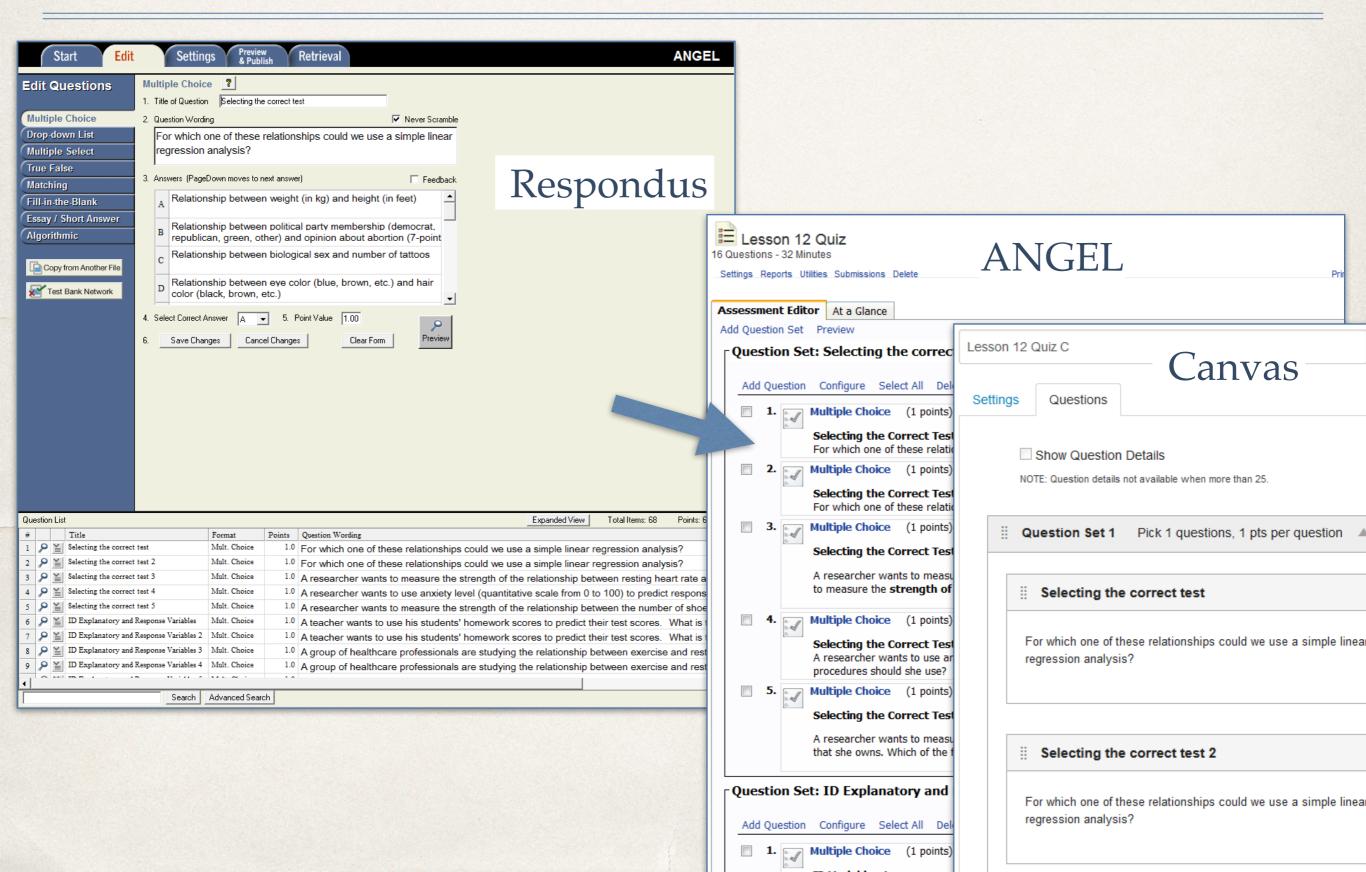
Lesson: Lab Activity

Lesson 12 Learning Objectives

Upon completion of this lesson, you should be able to do the following:

- identify situations in which correlation or regression
- within a given scenario, identify the explantory and
- interpret scatterplots.
- compute and interpret Pearson r correlation coefficient
- explain how outliers can influence correlation and r
- compute and interpret the coefficient of determinati
- interpret the results of a simple linear regression an

Lesson 12: Regression


NAME

Lab Assignment

Answer the following questions showing all work. For questions that require Minitab Express, include the appropriate output (copy + paste) along with an explanation. Use an alpha level of .05 unless otherwise specified.

- 1. Use the file SP16STUDENTDATA.MTW to answer the following questions. (40 points)
 - A. Create a scatterplot with height on the X-axis and shoe size on the Y-axis.
 - B. Describe the scatterplot that you made in part A in terms of direction, shape, strength, and outliers.
 - C. Would it be appropriate to compute a Pearson's r as a measure of the relationship between these two variables? Why or why not?
 - D. Compute the correlation (Pearson's r) for the relationship between height and shoe size and use the five-step hypothesis testing procedure to determine if the correlation is statistically significant.
 - E. How would you explain the results that you found in parts A through D to a friend with no knowledge of statistics?
 - F. How would you explain the results that you found in parts A through D to a statistics professor?

Lesson: Quiz

Lesson: Alignment

Lesson 12 Learning Objectives

Upon completion of this lesson, you should be able to do the following:

- identify situations in which correlation or regression analyses are appropriate.
- within a given scenario, identify the explantory and response variables.
- interpret scatterplots.
- compute and interpret Pearson r correlation coefficients.
- explain how outliers can influence correlation and regression analyses.
- compute and interpret the coefficient of determination (R²).
- interpret the results of a simple linear regression analysis.

Learning Objective	MyStatLab	Lab Assignment	Quiz
identify situations in which correlation or regression analyses are appropriate.		X	X
within a given scenario, identify the explantory and response variables.	X	X	X
interpret scatterplots.	X	X	X
compute and interpret Pearson r correlation coefficients.	X	X	X
explain how outliers can influence correlation and regression analyses.	X		X
compute and interpret the coefficient of determination (R ²).	X	X	X
interpret the results of a simple linear regression analysis.	X	X	X

Item Analysis - Quiz

Lesson 12 Quiz Item Analysis Report

16 Questions - 32 Minutes

View, Grade or Delete Submissions > Item Analysis

Assessment Response Summary

Assigned: In Progress: 0 / .00% Completed: 33 / 80.49% Average completion time: 18 minutes

Reliability

Average question difficulty 72.70%

Display Options

- Show all question text
- Show all answer option text
- Show Question Set text

Display response data: As Delivered

Question	Туре	Points	Sample Size	Mean	Difficulty A	Discrm.	Std. Dev.	Std. Error
41: R from r-square 2 (view)(regrade)	Multiple Choice	1	6	0.2	16.7%	.83	.373	.152
39: Correlation to Rsq 10 (view)(regrade)	Multiple Choice	1	9	0.2	22.2%	.93	.416	.139
40: R from r-square 1 (view)(regrade)	Multiple Choice	1	14	0.3	28.6%	.53	.452	.121
14: Simple Regression - Rsq 2 (view)(regrade)	Multiple Choice	1	14	0.3	28.6%	.03	.452	.121
44: R from r-square 5 (view)(regrade)	Multiple Choice	1	10	0.3	30%	.88	.458	.145
42: R from r-square 3 (view)(regrade)	Multiple Choice	1	13	0.3	30.8%	.56	.462	.128
43: R from r-square 4 (view)(regrade)	Multiple Choice	1	11	0.4	36.4%	.71	.481	.145
58: Simple Regression - Line Interpret 4 (view)(regrade) Multiple Choice	1	13	0.4	38.5%	.3	.487	.135
28: Simple Regression - Correlation 7 (view)(regrade)	Multiple Choice	1	27	0.4	44.4%	.73	.497	.096
34: Sig of r 5 (view)(regrade)	Multiple Choice	1	9	0.4	44.4%	.61	.497	.166
27: Simple Regression - Correlation 5 (view)(regrade)	Multiple Choice	1	24	0.5	45.8%	.74	.498	.102
38: Correlation to Rsq 9 (view)(regrade)	Multiple Choice	1	6	0.5	50%	.74	.500	.204
35: Simple Regression - Correlation to Rsq 2 (view) (regrade)	Multiple Choice	1	17	0.5	52.9%	.77	.499	.121
66: Simple Regression - Correlation 9 (view)(regrade)	Multiple Choice	1	11	0.5	54.5%	.31	.498	.150
54: Compute Residual 3 (view)(regrade)	Multiple Choice	1	16	0.6	56.3%	.38	.496	.124
62: Assumptions T/F (view)(regrade)	True or False	1	14	0.6	57.1%	43	495	132

Question Set	# of Qs on Exam	Points	Questions on exam	Question Writer
Lesson 7 - Confidence Intervals			on exem	
Theory / Interpretation	1	1	1-5	Harold
Statistics versus parameters	1	1	6-10	Harold
Standard error of p-hat	1	1	11-15	Harold
Standard error of x-bar	1	1	16-20	Kristen
Margin of error	1	1	21-25	Kristen
CI of p	1	1	26-30	Kristen
CI of µ	1	1	31-35	Fei
Lesson 8 - Hypothesis Testing				
Writing hypotheses	1	1	36-40	Fei
Using p values	1	1	41-43	Fei
Definitions	1	1	44-48	Dan
Minitab output	1	1	49-53	Dan
Test statistic: Proportion	1	1	54-58	Dan
Test statistic: Mean	1	1	59-63	Cody
Errors	1	1	64-68	Cody
Lesson 9 - Comparing Two Groups				
Test statistic: Paired	1	1	69-73	Cody
Conclusion based on p	1	1	74-78	Whitney
Hypothesis testing theory	1	1	79-83	Whitney
Lesson 10 - One-way ANOVA				
Assumptions	1	1	84-89	Orsay
Definitions	1	1	90-94	Orsay
Writing hypotheses	1	1	95-99	Orsay
Making conclusions	1	1	100-105	Scott
Lesson 11 - Association between Categorical Variab	les			
Reading a contingency table	1	1	106-110	Scott
Statistical significance theory	1	1	111-115	Scott
Writing hypothesis	1	1	116-119	Xiaojiao
Conclusion to chi-square test	1	1	120-124	Xiaojiao
Risk	1	1	125-127	Xiaojiao
Relative risk	1	1	128-132	Stefanie
Odds ratio	1	1	133-137	Stefanie
Lesson 12 - Inference about Regression				
Correlation to R ²	1	1	138-142	Stefanie
Interpreting r	1	1	143-147	Andrea
Interpreting scatterplot	1	1	148-151	Andrea
Simple linear regression- general	1	1	152-156	Andrea
Simple linear regression- interpreting	1	1	157-161	Mengzhao
Cautions	1	1	162-165	Mengzhao
Interpreting R ²	1	1	166-169	Mengzhao
Questions that Overlap Lessons				
Choosing the correct hypothesis test	3	3	170-184	1 pt each
Open-ended Questions				
Given output explain the results	2	4	185-186	2 pts each
Total # of questions	40	42		

Mid-Terms and Final

STAT 200 Mid-Term II

1. TheoryInterpretation 1 (1.0 point)

The 95% confidence interval for the mean height of all World Campus STAT 200 students is 66.914 inches to 67.633 inches. If all other factors are held constant, how would the width of the interval change if you constructed a 99% confidence interval?

- a. The width would decrease (i.e., it would be more narrow).
- b. The width would not change.
- *c. The width would increase (i.e., it would be wider).

General Feedback:

If the interval width increases, there is a greater probability that it may contain the true population parameter, hence increasing confidence. Additionally, the statistical multiplier values increase as the confidence level increases, thereby increasing the margin of error and the width of the confidence interval.

2. TheoryInterpretation 4 (1.0 point)

Which of the following statements regarding the t distribution is true?

- a. The total area under a t-distribution with 10 degrees of freedom is greater than the area under the standard normal curve (i.e., z distribution).
- *b. The t-distribution with 10 degrees of freedom is flatter and the tails are higher than the standard normal curve (i.e., z distribution).
- c. The t-distribution with 10 degrees of freedom more closely resembles the standard normal curve (i.e., z distribution) than the t-distribution with 50 degrees of freedom.

General Feedback:

The t distribution, becomes taller and narrower as df increases. When the

Item Analysis - Mid-Term

75 Minutes - One Attempt

Reports > Item Analysis

Assessment Response Summary

Assigned: 42
In Progress: 0 / .00%
Completed: 34 / 80.95%

Average completion time: 63 minutes

Reliability

Average question difficulty 76.80%

Display Options

- Show all question text
- Show all answer option text
- Show Question Set text
- Display response data: As Delivered

Question	Туре	Points	Sample Size	Mean	Difficulty	Discrm.	Std. Dev.	Std. Error
Question Set: CI General Theory (view)()								
1: TheoryInterpretation 1 (view)(regrade)	Multiple Choice	1	6	0.7	66.7%	.1	.471	.192
2: TheoryInterpretation 4 (view)(regrade)	Multiple Choice	1	9	0.6	55.6%	.78	.497	.166
3: TheoryInterpretation 6 (view)(regrade)	Multiple Choice	1	3	0.7	66.7%	.96	.471	.272
4: TheoryInterpretation 7 (view)(regrade)	Multiple Choice	1	8	8.0	75%	.23	.433	.153
5: TheoryInterpretation 8 (view)(regrade)	Multiple Choice	1	8	8.0	75%	.84	.433	.153
Question Set: Interpretation of CI (view)()								
6: Interpretation of CI 1 (view)(regrade)	Multiple Choice	1	9	1	100%	?	?	?
7: Interpretation of CI 2 (view)(regrade)	Multiple Choice	1	12	8.0	75%	.31	.433	.125
8: Interpretation of CI 3 (view)(regrade)	Multiple Choice	1	2	1	100%	?	?	?
9: Interpretation of CI 4 (view)(regrade)	Multiple Choice	1	5	0.6	60%	.47	.490	.219
10: Interpretation of CI 5 (view)(regrade)	Multiple Choice	1	6	1	100%	?	?	?
Question Set: Statistics versus Parameter (view)()								
11: Statistics vs Parame (view)(regrade)	Multiple Choice	1	13	0.5	46.2%	.46	.499	.138
12: Statistics vs Parame 2 (view)(regrade)	Multiple Choice	1	11	1	100%	?	?	?
13: Statistics vs Parame (view)(regrade)	Multiple Choice	1	5	0.2	20%	8	.400	.179
14: Statistics vs Parame 5 (view)(regrade)	Multiple Choice	1	5	0.4	40%	68	.490	.219
Question Set: Computing SE of x-bar (view)()								
15: Standard Error of xb (view)(regrade)	Multiple Choice	1	8	0.9	87.5%	47	331	117

Questions? / Contact Information

Whitney Zimmerman, Ph.D. STAT 200 Instructor & Coordinator Department of Statistics

waz107@psu.edu

Glenn Johnson Instructional Designer Department of Statistics

gfj100@psu.edu